New oscillation criteria for second-order half-linear advanced differential equations

被引:74
作者
Chatzarakis, G. E. [1 ]
Dzurina, J. [2 ]
Jadlovska, I [2 ]
机构
[1] Educators Sch Pedag & Technol Educ ASPETE, Dept Elect & Elect Engn, 14121 N Heraklio, Athens, Greece
[2] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math & Theoret Informat, Letna 9, Kosice 04200, Slovakia
关键词
Second-order differential equation; Advanced argument; Oscillation; Asymptotic properties; Noncanonical operators;
D O I
10.1016/j.amc.2018.10.091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to offer sufficient conditions for the oscillation and asymptotic behavior of all solutions of second-order half-linear differential equations with advanced argument of the form (r(y')(alpha))' (t) + q(t)y(alpha) (sigma(t)) = 0, when integral(infinity) r(-1/alpha) (s) ds < infinity. Our criteria substantially improve, simplify and complement a number of existing ones. The results obtained are illustrated by an example on the Euler type equations. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:404 / 416
页数:13
相关论文
共 24 条
[1]  
Agarwal R. P., 2003, Oscillation theory for second order dynamic equations, V5, DOI [10.4324/9780203222898, DOI 10.4324/9780203222898]
[2]  
Agarwal R.P., 2002, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, DOI [10.1007/978-94-017-2515-6, DOI 10.1007/978-94-017-2515-6]
[3]  
Agarwal R. P., 2004, Nonoscillation and oscillation: theory for functional differential equations, V267, DOI [10.1201/9780203025741, DOI 10.1201/9780203025741]
[4]  
Agarwal R.P., 2013, Oscillation Theory for Difference and Functional Differential Equations
[5]   Some remarks on oscillation of second order neutral differential equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :178-181
[6]   Even-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :481-490
[7]   New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :822-828
[8]  
[Anonymous], 2005, N HOLLAND MATH STUDI
[9]   Oscillatory behavior of the second order functional differential equations [J].
Baculikova, B. .
APPLIED MATHEMATICS LETTERS, 2017, 72 :35-41
[10]   Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments [J].
Bohner, Martin ;
Hassan, Taher S. ;
Li, Tongxing .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02) :548-560