Genetic architecture of transcript-level variation in humans

被引:103
|
作者
Duan, Shiwei [1 ]
Huang, R. Stephanie [1 ]
Zhang, Wei [1 ]
Bleibel, Wasim K. [1 ]
Roe, Cheryl A. [2 ]
Clark, Tyson A. [3 ]
Chen, Tina X. [3 ]
Schweitzer, Anthony C. [3 ]
Blume, John E. [3 ]
Cox, Nancy J. [2 ]
Dolan, M. Eileen [1 ]
机构
[1] Univ Chicago, Dept Med, Hematol Oncol Sect, Chicago, IL 60637 USA
[2] Univ Chicago, Med Genet Sect, Dept Med & Human Genet, Chicago, IL 60637 USA
[3] Affymetrix Inc, Affymetrix Lab, Express Res, Santa Clara, CA 95051 USA
关键词
D O I
10.1016/j.ajhg.2008.03.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We report here the results of testing the pairwise association of 12,747 transcriptional gene-expression values with more than two million single-nucleotide polymorphisms (SNPs) in samples of European (CEPH from Utah; CEU) and African (Yoruba from Ibadan; YRI) ancestry. We found 4,677 and 5,125 significant associations between expression quantitative nucleotides (eQTNs) and transcript clusters in the CEU and the YRI samples, respectively. The physical distance between an eQTN and its associated transcript cluster was referred to as the intrapair distance. An association with 4 Mb or less intrapair distance was defined as local; otherwise, it was defined as distant. The enrichment analysis of functional categories shows that genes harboring the local eQTNs are enriched in the categories related to nucleosome and chromatin assembly; the genes harboring the distant eQTNs are enriched in the categories related to transmembrane signal transduction, suggesting that these biological pathways are likely to play a significant role in regulation of gene expression. We highlight in the EPHX1 gene a deleterious nonsynonymous SNP that is distantly associated with gene expression of ORMDL3, a susceptibility gene for asthma.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [1] Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid
    Kirst, M
    Basten, CJ
    Myburg, AA
    Zeng, ZB
    Sederoff, RR
    GENETICS, 2005, 169 (04) : 2295 - 2303
  • [2] Physiological and biotechnological implications of transcript-level variation under abiotic stress
    Sanchez, D. H.
    PLANT BIOLOGY, 2013, 15 (06) : 925 - 930
  • [3] Transcript-level responses of Plasmodium falciparum to thiostrepton
    Tarr, Sarah J.
    Nisbet, R. Ellen R.
    Howe, Christopher J.
    MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2011, 179 (01) : 37 - 41
  • [4] Gene-level differential analysis at transcript-level resolution
    Lynn Yi
    Harold Pimentel
    Nicolas L. Bray
    Lior Pachter
    Genome Biology, 19
  • [5] Gene-level differential analysis at transcript-level resolution
    Yi, Lynn
    Pimentel, Harold
    Bray, Nicolas L.
    Pachter, Lior
    GENOME BIOLOGY, 2018, 19
  • [6] Transcript-level expression control of plant NLR genes
    Lai, Yan
    Eulgem, Thomas
    MOLECULAR PLANT PATHOLOGY, 2018, 19 (05) : 1267 - 1281
  • [7] Transcript-Level Biomarkers of Early Lung Carcinogenesis in Bronchial Lesions
    Pyatnitskiy, Mikhail A.
    Poverennaya, Ekaterina V.
    CANCERS, 2024, 16 (12)
  • [8] Advances and current limitations in transcript-level control of gene expression
    Leavitt, John M.
    Alper, Hal S.
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 34 : 98 - 104
  • [9] TALC: Transcript-level Aware Long-read Correction
    Broseus, Lucile
    Thomas, Aubin
    Oldfield, Andrew J.
    Severac, Dany
    Dubois, Emeric
    Ritchie, William
    BIOINFORMATICS, 2020, 36 (20) : 5000 - 5006
  • [10] Identifying transcript-level differential expression in primary human immune cells
    Mola, Sarai
    Beauchamp, Claudine
    Boucher, Gabrielle
    Lesage, Sylvie
    Karaky, Mohamad
    Goyette, Philippe
    Foisy, Sylvain
    Rioux, John D.
    MOLECULAR IMMUNOLOGY, 2023, 153 : 181 - 193