Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ

被引:49
作者
Bereanu, Cristian [1 ]
Mawhin, Jean [1 ]
机构
[1] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
phi-Laplacian; periodic solutions; continuation theorem; Leray-Schauder degree;
D O I
10.1016/j.na.2006.12.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Leray-Schauder degree theory we obtain various existence and multiplicity results for nonlinear periodic boundary-value problems of the form (phi(u'))' = f(t, u, u'), u(0) - u(T) = 0 = u'(0) - u'(T), where phi : R -->] -a, a [ (0 < a <= + infinity) is a homeomorphism, phi(0) = 0 and f : [0, T] x R-2 --> R is a continuous function. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1668 / 1681
页数:14
相关论文
共 14 条
[1]  
AMBROSETTI A., 1972, ANN MAT PUR APPL, V93, P231
[2]   Periodic solutions for nonlinear equations with mean curvature-like operators [J].
Benevieri, Pierluigi ;
do O, Joao Marcos ;
de Medeiros, Everaldo Souto .
APPLIED MATHEMATICS LETTERS, 2007, 20 (05) :484-492
[3]  
Bereanu C, 2006, ADV DIFFERENTIAL EQU, V11, P35
[4]  
BEREANU C, UNPUB EXISTENCE MULT
[5]   A MULTIPLICITY RESULT FOR PERIODIC-SOLUTIONS OF FORCED NONLINEAR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
FABRY, C ;
MAWHIN, J ;
NKASHAMA, MN .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :173-180
[6]  
Jebelean P, 2002, ADV NONLINEAR STUD, V2, P299
[7]   ON PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
LAZER, AC ;
SOLIMINI, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) :109-114
[8]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[9]  
Manasevich R., 2000, J KOREAN MATH SOC, V37, P665
[10]  
Mawhin J, 2006, J EUR MATH SOC, V8, P375