A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis

被引:168
|
作者
Xu, Guo-Yun [1 ,2 ]
Rocha, Pedro S. C. F. [1 ]
Wang, Man-Ling [1 ]
Xu, Meng-Liang [3 ]
Cui, Yan-Chun [1 ,2 ]
Li, Luo-Ye [1 ]
Zhu, Yu-Xing [1 ]
Xia, Xinjie [1 ]
机构
[1] Chinese Acad Sci, Inst Subtrop Agr, Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Hunan Normal Univ, Life Sci Coll, Changsha 410081, Hunan, Peoples R China
关键词
ABA; Arabidopsis; Calmodulin-like gene; Drought; OsMSR2; Salt; ABSCISIC-ACID; SIGNAL-TRANSDUCTION; CALCIUM SENSORS; EXPRESSION; PROTEIN; STRESS; RESPONSES; TARGET; FAMILY; LOCALIZATION;
D O I
10.1007/s00425-011-1386-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Many abiotic stimuli, such as drought and salt stresses, elicit changes in intracellular calcium levels that serve to convey information and activate adaptive responses. Ca2+ signals are perceived by different Ca2+ sensors, and calmodulin (CaM) is one of the best-characterized Ca2+ sensors in eukaryotes. Calmodulin-like (CML) proteins also exist in plants, but their functions at the physiological and molecular levels are largely unknown. In this report, we present data on OsMSR2 (Oryza sativa L. Multi-Stress-Responsive gene 2), a novel calmodulin-like protein gene isolated from rice Pei'ai 64S (Oryza sativa L.). Expression of OsMSR2 was strongly up-regulated by a wide spectrum of stresses, including cold, drought, and heat in different tissues at different developmental stages of rice, as revealed by both microarray and quantitative real-time RT-PCR analyses. Analysis of the recombinant OsMSR2 protein demonstrated its potential ability to bind Ca2+ in vitro. Expression of OsMSR2 conferred enhanced tolerance to high salt and drought in Arabidopsis (Arabidopsis thaliana) accompanied by altered expression of stress/ABA-responsive genes. Transgenic plants also exhibited hypersensitivity to ABA during the seed germination and post-germination stages. The results suggest that expression of OsMSR2 modulated salt and drought tolerance in Arabidopsis through ABA-mediated pathways.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [21] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Zhu, Yanfei
    Chen, Quanjia
    Liu, Xiaodong
    Qu, Yanying
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2021, 33 (04) : 427 - 441
  • [22] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Du, Hao-Yue
    Shen, Yin-Zhu
    Huang, Zhan-Jing
    PLANT MOLECULAR BIOLOGY, 2013, 81 (4-5) : 417 - 429
  • [23] OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis
    Xu, Guoyun
    Cui, Yanchun
    Wang, Manling
    Li, Mingjuan
    Yin, Xuming
    Xia, Xinjie
    MOLECULAR BREEDING, 2014, 34 (03) : 1055 - 1064
  • [24] Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana
    Ren, Shuxin
    Lyle, Chimera
    Jiang, Guo-liang
    Penumala, Abhishek
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [25] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Yanfei Zhu
    Quanjia Chen
    Xiaodong Liu
    Yanying Qu
    Theoretical and Experimental Plant Physiology, 2021, 33 : 427 - 441
  • [26] Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana
    Liu, Sha
    Wang, Congpeng
    Jia, Fuli
    An, Yi
    Liu, Chao
    Xia, Xinli
    Yin, Weilun
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 125 (03) : 419 - 431
  • [27] A novel ABA-induced transcript factor from Millettia pinnata, MpAITR1 enhances salt and drought tolerance through ABA signaling in transgenic Arabidopsis
    Yang, Heng
    Zhang, Yi
    Liu, Yujuan
    Jian, Shuguang
    Deng, Shulin
    JOURNAL OF PLANT PHYSIOLOGY, 2023, 288
  • [28] Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth
    Ding, Haidong
    Qian, Ying
    Fang, Yifang
    Ji, Yurong
    Sheng, Jiarong
    Ge, Cailin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [29] ZmCaM2-1, a Calmodulin Gene, Negatively Regulates Drought Tolerance in Transgenic Arabidopsis Through the ABA-Independent Pathway
    Wu, Zhiqiang
    Liu, Meiyi
    Wang, Hanqiao
    Li, Mingrui
    Liu, Xiaoyue
    Zang, Zhenyuan
    Jiang, Liangyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [30] Overexpression of the receptor-like kinase gene OsNRRB enhances drought-stress tolerance in rice
    Zhang, Y. X.
    Chen, L.
    EUPHYTICA, 2017, 213 (04)