A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis

被引:167
|
作者
Xu, Guo-Yun [1 ,2 ]
Rocha, Pedro S. C. F. [1 ]
Wang, Man-Ling [1 ]
Xu, Meng-Liang [3 ]
Cui, Yan-Chun [1 ,2 ]
Li, Luo-Ye [1 ]
Zhu, Yu-Xing [1 ]
Xia, Xinjie [1 ]
机构
[1] Chinese Acad Sci, Inst Subtrop Agr, Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Hunan Normal Univ, Life Sci Coll, Changsha 410081, Hunan, Peoples R China
关键词
ABA; Arabidopsis; Calmodulin-like gene; Drought; OsMSR2; Salt; ABSCISIC-ACID; SIGNAL-TRANSDUCTION; CALCIUM SENSORS; EXPRESSION; PROTEIN; STRESS; RESPONSES; TARGET; FAMILY; LOCALIZATION;
D O I
10.1007/s00425-011-1386-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Many abiotic stimuli, such as drought and salt stresses, elicit changes in intracellular calcium levels that serve to convey information and activate adaptive responses. Ca2+ signals are perceived by different Ca2+ sensors, and calmodulin (CaM) is one of the best-characterized Ca2+ sensors in eukaryotes. Calmodulin-like (CML) proteins also exist in plants, but their functions at the physiological and molecular levels are largely unknown. In this report, we present data on OsMSR2 (Oryza sativa L. Multi-Stress-Responsive gene 2), a novel calmodulin-like protein gene isolated from rice Pei'ai 64S (Oryza sativa L.). Expression of OsMSR2 was strongly up-regulated by a wide spectrum of stresses, including cold, drought, and heat in different tissues at different developmental stages of rice, as revealed by both microarray and quantitative real-time RT-PCR analyses. Analysis of the recombinant OsMSR2 protein demonstrated its potential ability to bind Ca2+ in vitro. Expression of OsMSR2 conferred enhanced tolerance to high salt and drought in Arabidopsis (Arabidopsis thaliana) accompanied by altered expression of stress/ABA-responsive genes. Transgenic plants also exhibited hypersensitivity to ABA during the seed germination and post-germination stages. The results suggest that expression of OsMSR2 modulated salt and drought tolerance in Arabidopsis through ABA-mediated pathways.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [1] A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis
    Guo-Yun Xu
    Pedro S. C. F. Rocha
    Man-Ling Wang
    Meng-Liang Xu
    Yan-Chun Cui
    Luo-Ye Li
    Yu-Xing Zhu
    Xinjie Xia
    Planta, 2011, 234 : 47 - 59
  • [2] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Xuming Yin
    Lifang Huang
    Xin Zhang
    Manling Wang
    Guoyun Xu
    Xinjie Xia
    Plant Growth Regulation, 2015, 75 : 549 - 556
  • [3] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Yin, Xuming
    Huang, Lifang
    Zhang, Xin
    Wang, Manling
    Xu, Guoyun
    Xia, Xinjie
    PLANT GROWTH REGULATION, 2015, 75 (02) : 549 - 556
  • [4] A Maize Calmodulin-like 3 Gene Positively Regulates Drought Tolerance in Maize and Arabidopsis
    Li, Dan
    Wang, Hanqiao
    Luo, Fushun
    Li, Mingrui
    Wu, Zhiqiang
    Liu, Meiyi
    Wang, Zhen
    Zang, Zhenyuan
    Jiang, Liangyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [5] CML20, an Arabidopsis Calmodulin-like Protein, Negatively Regulates Guard Cell ABA Signaling and Drought Stress Tolerance
    Wu, Xiaomeng
    Qiao, Zhu
    Liu, Huiping
    Acharya, Biswa R.
    Li, Chunlong
    Zhang, Wei
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [6] Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis
    Scholz, Sandra S.
    Reichelt, Michael
    Vadassery, Jyothilakshmi
    Mithoefer, Axel
    PLANT SIGNALING & BEHAVIOR, 2015, 10 (06)
  • [7] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Yanfei Zhu
    Quanjia Chen
    Xiaodong Liu
    Yanying Qu
    Theoretical and Experimental Plant Physiology, 2021, 33 : 427 - 441
  • [8] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Zhu, Yanfei
    Chen, Quanjia
    Liu, Xiaodong
    Qu, Yanying
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2021, 33 (04) : 427 - 441
  • [9] Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana
    Veronica Gonzalez, Carina
    Elizabeth Ibarra, Silvia
    Noemi Piccoli, Patricia
    Francisco Botto, Javier
    Esteban Boccalandro, Hernan
    PLANT CELL AND ENVIRONMENT, 2012, 35 (11): : 1958 - 1968
  • [10] Overexpression of the AtSTK gene increases salt, PEG and ABA tolerance in Arabidopsis
    Bing, Lei
    Feng, Cui-Cui
    Li, Jing-Lan
    Li, Xiao-Xu
    Zhao, Bao-Cun
    Shen, Yin-Zhu
    Huang, Zhan-Jing
    Ge, Rong-Chao
    JOURNAL OF PLANT BIOLOGY, 2013, 56 (06) : 375 - 382