HWloc 2,2 -regularity for p-harmonic functions in Heisenberg groups

被引:3
作者
Liu, Jiayin [2 ]
Peng, Fa [2 ]
Zhou, Yuan [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] Beihang Univ, Dept Math, Beijing 100191, Peoples R China
关键词
p-harmonic function; Heisenberg group; Sobolev regularity; C-1; C-ALPHA-REGULARITY; EQUATIONS;
D O I
10.1515/acv-2021-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p <= 4 when n = 1, and 1 < p < 3 + 1/n-1 when n >= 2. We obtain the second-order horizontal Sobolev HWloc (2,2) -regularity of p-harmonic functions in the Heisenberg group Hn. This improves the known range of p obtained by Domokos and Manfredi in 2005.
引用
收藏
页码:379 / 390
页数:12
相关论文
共 50 条
  • [21] CURVATURE ESTIMATES IN DIMENSIONS 2 AND 3 FOR THE LEVEL SETS OF p-HARMONIC FUNCTIONS IN CONVEX RINGS
    Jost, Juergen
    Ma, Xi-Nan
    Ou, Qianzhong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) : 4605 - 4627
  • [22] EPSILON-REGULARITY FOR p-HARMONIC MAPS AT A FREE BOUNDARY ON A SPHERE
    Mazowiecka, Katarzyna
    Rodiac, Remy
    Schikorra, Armin
    ANALYSIS & PDE, 2020, 13 (05): : 1301 - 1331
  • [23] Variational p-harmonious functions: existence and convergence to p-harmonic functions
    Chandra, E. W.
    Ishiwata, M.
    Magnanini, R.
    Wadade, H.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (05):
  • [24] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Gong, Jasun
    Hajlasz, Piotr
    POTENTIAL ANALYSIS, 2013, 38 (01) : 79 - 93
  • [25] The inverse mean curvature flow and p-harmonic functions
    Moser, Roger
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (01) : 77 - 83
  • [26] VANISHING p-CAPACITY OF SINGULAR SETS FOR p-HARMONIC FUNCTIONS
    Sato, Tomohiko
    Suzuki, Takashi
    Takahashi, Futoshi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [27] p-Harmonic functions in the Heisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes
    Nystrom, Kaj
    MATHEMATISCHE ANNALEN, 2013, 357 (01) : 307 - 353
  • [28] The Liouville theorem for p-harmonic functions and quasiminimizers with finite energy
    Bjorn, Anders
    Bjorn, Jana
    Shanmugalingam, Nageswari
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 827 - 854
  • [29] The Dirichlet problem for p-harmonic functions with respect to arbitrary compactifications
    Bjorn, Anders
    Bjorn, Jana
    Sjodin, Tomas
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) : 1323 - 1360
  • [30] Local gradient estimate for p-harmonic functions on Riemannian manifolds
    Wang, Xiaodong
    Zhang, Lei
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (04) : 759 - 771