Performance of a cross-flow humidifier with a high flux water vapor transport membrane

被引:30
作者
Ahluwalia, R. K. [1 ]
Wang, X. [1 ]
Johnson, W. B. [2 ]
Berg, F. [3 ]
Kadylak, D. [4 ]
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] WL Gore & Assoc Inc, Newark, DE USA
[3] Ford Motor Corp, Dearborn, MI USA
[4] dPoint Technol Inc, Vancouver, BC, Canada
关键词
Polymer electrolyte fuel cells; Membrane humidifier; Composite membrane; Water vapor transport; Combined thermal and mass transfer; FUEL-CELL SYSTEMS;
D O I
10.1016/j.jpowsour.2015.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m(2) active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 19 条
  • [1] Ahluwalia R.K., 2014, FY 2014 ANN PROGR RE
  • [2] Fuel cell systems for transportation: Status and trends
    Ahluwalia, Rajesh K.
    Wang, Xiaohua.
    [J]. JOURNAL OF POWER SOURCES, 2008, 177 (01) : 167 - 176
  • [3] Direct hydrogen fuel cell systems for hybrid vehicles
    Ahluwalia, RK
    Wang, X
    [J]. JOURNAL OF POWER SOURCES, 2005, 139 (1-2) : 152 - 164
  • [4] [Anonymous], 2004, 15496 ISO
  • [5] Breault R.D, 2004, U.S. Patent, Patent No. [6,682,835, 6682835]
  • [6] High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review
    Chandan, Amrit
    Hattenberger, Mariska
    El-Kharouf, Ahmad
    Du, Shangfeng
    Dhir, Aman
    Self, Valerie
    Pollet, Bruno G.
    Ingram, Andrew
    Bujalski, Waldemar
    [J]. JOURNAL OF POWER SOURCES, 2013, 231 : 264 - 278
  • [7] DuBose R. A., 2000, US Patenet No, Patent No. [6013, 385, 6013385]
  • [8] Hood P.D, 2013, U. S. Patent, Patent No. [8,614,030, 8614030]
  • [9] U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications
    Houchins, Cassidy
    Kleen, Greg J.
    Spendelow, Jacob S.
    Kopasz, John
    Peterson, David
    Garland, Nancy L.
    Ho, Donna Lee
    Marcinkoski, Jason
    Martin, Kathi Epping
    Tyler, Reginald
    Papageorgopoulos, Dimitrios C.
    [J]. MEMBRANES, 2012, 2 (04): : 855 - 878
  • [10] Johnson W.B., 2014, DEEE0000465 EN EFF R