Two-grid discretization schemes for nonlinear Schrodinger equations

被引:30
作者
Chien, C. -S. [1 ]
Huang, H. -T.
Jeng, B. -W. [2 ]
Li, Z. -C. [3 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
Schrodinger equation; two-grid discretization schemes; continuation; Adini's elements;
D O I
10.1016/j.cam.2007.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study efficient two-grid discretization schemes with two-loop continuation algorithms for computing wave functions of two-coupled nonlinear Schrodinger equations defined on the unit square and the unit disk. Both linear and quadratic approximations of the operator equations are exploited to derive the schemes. The centered difference approximations, the six-node triangular elements and the Adini elements are used to discretize the PDEs defined on the unit square. The proposed schemes also can compute stationary solutions of parameter-dependent reaction-diffusion systems. Our numerical results show that it is unnecessary to perform quadratic approximations. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:549 / 571
页数:23
相关论文
共 27 条
[1]   Bose-Einstein condensation of atomic gases [J].
Anglin, JR ;
Ketterle, W .
NATURE, 2002, 416 (6877) :211-218
[2]   Ground states and dynamics of multicomponent Bose-Einstein condensates [J].
Bao, WZ .
MULTISCALE MODELING & SIMULATION, 2004, 2 (02) :210-236
[3]   Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow [J].
Bao, WZ ;
Du, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1674-1697
[4]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[5]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[6]   Liapunov-Schmidt reduction and continuation for nonlinear Schrodinger equations [J].
Chang, S.-L. ;
Chien, C.-S. ;
Jeng, B.-W. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02) :729-755
[7]   Computing wave functions of nonlinear Schrodinger equations: A time-independent approach [J].
Chang, S.-L. ;
Chien, C.-S. ;
Jeng, B.-W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) :104-130
[8]   A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations [J].
Chen, YP ;
Huang, YQ ;
Yu, DH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :193-209
[9]   Numerical continuation at double bifurcation points of a reaction-diffusion problem [J].
Chien, CS ;
Mei, Z ;
Shen, CL .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (01) :117-139
[10]   A two-grid discretization scheme for semilinear elliptic eigenvalue problems [J].
Chien, CS ;
Jeng, BW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) :1287-1304