Light Sources and Dosimetry Techniques for Photodynamic Therapy

被引:306
作者
Kim, Michele M. [1 ]
Darafsheh, Arash [2 ]
机构
[1] Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA
[2] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
关键词
SQUAMOUS-CELL CARCINOMA; TOPICAL 5-AMINOLEVULINIC ACID; ORAL VERRUCOUS HYPERPLASIA; OPTICAL-PROPERTIES; IN-VIVO; FLUORESCENCE SPECTROSCOPY; MACULAR DEGENERATION; EXPLICIT DOSIMETRY; BARRETTS-ESOPHAGUS; CLINICAL-OUTCOMES;
D O I
10.1111/php.13219
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.
引用
收藏
页码:280 / 294
页数:15
相关论文
共 182 条
[21]   In vivo wireless photonic photodynamic therapy [J].
Bansal, Akshaya ;
Yang, Fengyuan ;
Xi, Tian ;
Zhang, Yong ;
Ho, John S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (07) :1469-1474
[22]   Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways [J].
Baptista, Mauricio S. ;
Cadet, Jean ;
Di Mascio, Paolo ;
Ghogare, Ashwini A. ;
Greer, Alexander ;
Hamblin, Michael R. ;
Lorente, Carolina ;
Nunez, Silvia Cristina ;
Ribeiro, Martha Simoes ;
Thomas, Andres H. ;
Vignoni, Mariana ;
Yoshimura, Tania Mateus .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2017, 93 (04) :912-919
[23]   Molecular photosensitisers for two-photon photodynamic therapy [J].
Bolze, F. ;
Jenni, S. ;
Sour, A. ;
Heitz, V. .
CHEMICAL COMMUNICATIONS, 2017, 53 (96) :12857-12877
[24]   Photodynamic therapy for cancer of the pancreas [J].
Bown, SG ;
Rogowska, AZ ;
Whitelaw, DE ;
Lees, WR ;
Lovat, LB ;
Ripley, P ;
Jones, L ;
Wyld, P ;
Gillams, A ;
Hatfield, AWR .
GUT, 2002, 50 (04) :549-557
[25]  
BRAICHOTTE DR, 1995, CANCER, V75, P2768, DOI 10.1002/1097-0142(19950601)75:11<2768::AID-CNCR2820751122>3.0.CO
[26]  
2-I
[27]   Laser and non-laser light sources for photodynamic therapy [J].
Brancaleon, L ;
Moseley, H .
LASERS IN MEDICAL SCIENCE, 2002, 17 (03) :173-186
[28]   The application and challenges of clinical PD-PDT in the head and neck region A short review [J].
Bredell, Marius G. ;
Besic, Emina ;
Maake, Caroline ;
Walt, Heinrich .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2010, 101 (03) :185-190
[29]  
Bressler NM, 2000, INVEST OPHTH VIS SCI, V41, P624
[30]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838