A binary water wave optimization for feature selection

被引:33
|
作者
Ibrahim, Abdelmonem M. [1 ,3 ]
Tawhid, M. A. [3 ]
Ward, Rabab K. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Assiut Branch, Assiut, Egypt
[2] Univ British Columbia, Elect & Comp Engn Dept, Vancouver, BC V6T 1Z4, Canada
[3] Thompson Rivers Univ, Fac Sci, Dept Math & Stat, Kamloops, BC V2C 0C8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Classification; Feature selection; Metaheuristics; Rough set theory; Water wave optimization; Wrapper approaches; PARTICLE SWARM OPTIMIZATION; ROUGH SET APPROACH; ATTRIBUTE REDUCTION; INTELLIGENCE; ALGORITHM; NETWORKS; SEARCH;
D O I
10.1016/j.ijar.2020.01.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A search method that finds a minimal subset of features (over a feature space) that yields maximum classification accuracy is proposed. This method employs rough set theory (RST) along with a newly introduced binary version of the water wave optimization approach (WWO) which is denoted by BWWO. WWO simulates the phenomena of water waves, such as propagation, refraction, and breaking and is one of the newest nature inspired methods for global optimization problems. In our approach, BWWO utilizes the phenomena of water waves propagation, refraction, and breaking in a binary version. Two main experiments based on the rough set approach and wrapper method as a part of the objective function are carried out to verify the performance of the proposed algorithm. In the first experiment, the effectiveness of the proposed approach based on RST is demonstrated on 16 different datasets. The proposed approach is compared with various typical attribute reduction methods and popular optimizers in the literature, such as ant colony, nonlinear great deluge algorithm, scatter search and others. For the second experiment, a feature subset that maximizes the classification accuracy (using cross-validated kNN classifier) with minimizing the number of selected features is obtained over 17 different datasets. In wrapper experiment BWWO is compared with the binary gray wolf optimization, binary particle swarm optimizer, binary cat swarm optimization, binary dragonfly algorithm and the binary bat algorithm. The computational results demonstrate the efficiency and effectiveness of the proposed approach in finding a minimal features subset that maximize the classification accuracy. Furthermore, Friedman test and Wilcoxon's rank-sum test are carried out at 5% significance level in this study. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 91
页数:18
相关论文
共 50 条
  • [31] An Enhanced Binary Particle Swarm Optimization for Optimal Feature Selection in Bearing Fault Diagnosis of Electrical Machines
    Lee, Chun-Yao
    Le, Truong-An
    IEEE ACCESS, 2021, 9 : 102671 - 102686
  • [32] A novel feature selection using binary hybrid improved whale optimization algorithm
    Uzer, Mustafa Serter
    Inan, Onur
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09) : 10020 - 10045
  • [33] A Comparative Study on Binary Artificial Bee Colony Optimization Methods for Feature Selection
    Ozger, Zeynep Banu
    Bolat, Bulent
    Diri, Banu
    PROCEEDINGS OF THE 2016 INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2016,
  • [34] A binary Sine Cosine-Modified Whale Optimization Algorithm for Feature Selection
    Eid, Marwa M.
    El-kenawy, El-Sayed M.
    Ibrahim, Abdelhameed
    2021 IEEE NATIONAL COMPUTING COLLEGES CONFERENCE (NCCC 2021), 2021, : 1133 - +
  • [35] A discrete particle swarm optimization method for feature selection in binary classification problems
    Unler, Alper
    Murat, Alper
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (03) : 528 - 539
  • [36] Hybrid Binary Atom Search Optimization Approaches with Statistical Dependence for Feature Selection
    Hammadi, Wafaa Qassim
    Qasim, Omar S.
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 218 - 223
  • [37] A binary chaotic horse herd optimization algorithm for feature selection
    Zaimoglu, Esin Ayse
    Yurtay, Nilufer
    Demirci, Huseyin
    Yurtay, Yuksel
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2023, 44
  • [38] Chaotic Atom Search Optimization for Feature Selection
    Too, Jingwei
    Abdullah, Abdul Rahim
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (08) : 6063 - 6079
  • [39] A novel adaptive memetic binary optimization algorithm for feature selection
    Cinar, Ahmet Cevahir
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) : 13463 - 13520
  • [40] Binary Dragonfly Algorithm for Feature Selection
    Mafarja, Majdi M.
    Eleyan, Derar
    Jaber, Iyad
    Mirjalili, Seyedali
    Hammouri, Abdelaziz
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 12 - 17