机构:
Univ Calif Berkeley, Berkeley, CA 94720 USAUniv Calif Berkeley, Berkeley, CA 94720 USA
Fletcher, Alyson K.
[1
]
Rangan, Sundeep
论文数: 0引用数: 0
h-index: 0
机构:
QUALCOMM Flar Technol, Bridgewater, NJ USAUniv Calif Berkeley, Berkeley, CA 94720 USA
Rangan, Sundeep
[2
]
Goyal, Vivek K.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Cambridge, MA 02139 USAUniv Calif Berkeley, Berkeley, CA 94720 USA
Goyal, Vivek K.
[3
]
机构:
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] QUALCOMM Flar Technol, Bridgewater, NJ USA
[3] MIT, Cambridge, MA 02139 USA
来源:
2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2
|
2007年
关键词:
basis pursuit;
compressed sensing;
estimation;
matching pursuit;
maximum likelihood;
unions of subspaces;
D O I:
10.1109/SSP.2007.4301258
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Sparse signal models arise commonly in audio and image processing. Recent work in the area of compressed sensing has provided estimates of the performance of certain widely-used sparse signal processing techniques such as basis pursuit and matching pursuit. However, the optimal achievable performance with sparse signal approximation remains unknown. This paper provides bounds on the ability to estimate a sparse signal in noise. Specifically, we show that there is a critical minimum signal-to-noise ratio (SNR) that is required for reliable detection of the sparsity pattern of the signal. We furthermore relate this critical SNR to the asymptotic mean squared error of the maximum likelihood estimate of a sparse signal in additive Gaussian noise. The critical SNR is a simple function of the problem dimensions.