Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure

被引:28
作者
Korznikova, Elena A. [1 ]
Shcherbinin, Stepan A. [2 ]
Ryabov, Denis S. [2 ]
Chechin, George M. [2 ]
Ekomasov, Evgeny G. [3 ,4 ]
Barani, Elham [5 ]
Zhou, Kun [6 ]
Dmitriev, Sergey V. [1 ,7 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Khalturina St 39, Ufa 450001, Russia
[2] Southern Fed Univ, Inst Phys, Stachki Ave 194, Rostov Na Donu 344090, Russia
[3] Natl Res South Ural State Univ, Lenin Ave 76, Chelyabinsk 454080, Russia
[4] Tyumen State Univ, Volodarsky St 6, Tyumen 625003, Russia
[5] Ferdowsi Univ Mashhad, Fac Sci, Dept Chem, Azazi Sq 5, Mashhad 917751436, Iran
[6] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 6397988, Singapore
[7] Natl Res Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2019年 / 256卷 / 01期
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
delocalized nonlinear vibrational mode; graphene; molecular dynamics; negative pressure; nonlinear dynamics; second harmonic generation; GAP DISCRETE BREATHERS; POISSONS RATIO; MECHANICAL-PROPERTIES; AUXETIC PROPERTIES; DYNAMICAL-SYSTEMS; CUBIC MATERIALS; SIMULATION; STABILITY; SYMMETRY; BUSHES;
D O I
10.1002/pssb.201800061
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
With the help of molecular dynamics simulations, delocalized nonlinear vibrational modes (DNVM) in graphene are analyzed. Such modes are dictated by the lattice symmetry, they are exact solutions to the atomic equations of motion, regardless the employed interatomic potential and for any mode amplitude (though for large amplitudes they are typically unstable). In this study, only one- and two-component DNVM are analyzed, they are reducible to the dynamical systems with one and two degrees of freedom, respectively. There exist 4 one-component and 12 two-component DNVM with in-plane atomic displacements. Any two-component mode includes one of the one-component modes. If the amplitudes of the modes constituting a two-component mode are properly chosen, periodic in time vibrations are observed for the two degrees of freedom at frequencies omega and 2 omega, that is, second harmonic generation takes place. For particular DNVM, the higher harmonic can have frequency nearly two times larger than the maximal frequency of the phonon spectrum of graphene. Excitation of some of DNVM results in the appearance of negative in-plane pressure in graphene. This counterintuitive result is explained by the rotational motion of carbon hexagons. Our results contribute to the understanding of nonlinear dynamics of the graphene lattice.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Inverse Design of Nonlinear Polaritonic Metasurfaces for Second Harmonic Generation
    Mann, Sander A. .
    Goh, Heedong
    Alu, Andrea
    ACS PHOTONICS, 2023, 10 (04): : 993 - 1000
  • [32] Modeling of nonlinear optical second harmonic generation in periodic structures
    Bao, G
    Zhou, ZF
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1097 - 1105
  • [33] Investigation of the nonlinear optical properties of metamaterials by second harmonic generation
    M. Gentile
    M. Hentschel
    R. Taubert
    H. Guo
    H. Giessen
    M. Fiebig
    Applied Physics B, 2011, 105
  • [34] Imaging through Nonlinear Metalens Using Second Harmonic Generation
    Schlickriede, Christian
    Waterman, Naomi
    Reineke, Bernhard
    Georgi, Philip
    Li, Guixin
    Zhang, Shuang
    Zentgraf, Thomas
    ADVANCED MATERIALS, 2018, 30 (08)
  • [35] Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes
    Kozyreff, Gregory
    Luis Dominguez-Juarez, Jorge
    Martorell, Jordi
    LASER & PHOTONICS REVIEWS, 2011, 5 (06) : 737 - 749
  • [36] Anisotropy-enhanced second-harmonic generation from graphene-wrapped nanoparticles
    Wang, Chenglin
    Novitsky, Andrey
    Ge, Wenxuan
    Gao, Dongliang
    Gao, Lei
    OPTIK, 2023, 276
  • [37] Inverse problems for nonlinear Maxwell's equations with second harmonic generation
    Assylbekov, Yernat M.
    Zhou, Ting
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 296 : 148 - 169
  • [38] Nonlinear optical second harmonic generation in ferroelectric SmC* at noncollinear geometry
    Belyakova, VA
    Copic, M
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1999, 328 : 151 - 160
  • [39] Optically poled germanosilicate glass as a nonlinear material for second harmonic generation
    Feng, X.
    Li, F. Q.
    Lin, A. X.
    Chai, X. X.
    Wang, F.
    Zhu, Q. H.
    Wang, Z. P.
    Sun, X. B.
    Sun, X.
    LASER PHYSICS, 2019, 29 (03)
  • [40] Transverse second-harmonic generation from disordered nonlinear crystals
    Fischer, Robert
    Saltiel, Solomon M.
    Neshev, Dragomir N.
    Krolikowski, Wieslaw
    Kivshar, Yuri S.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (03): : 569 - 574