Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure

被引:28
|
作者
Korznikova, Elena A. [1 ]
Shcherbinin, Stepan A. [2 ]
Ryabov, Denis S. [2 ]
Chechin, George M. [2 ]
Ekomasov, Evgeny G. [3 ,4 ]
Barani, Elham [5 ]
Zhou, Kun [6 ]
Dmitriev, Sergey V. [1 ,7 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Khalturina St 39, Ufa 450001, Russia
[2] Southern Fed Univ, Inst Phys, Stachki Ave 194, Rostov Na Donu 344090, Russia
[3] Natl Res South Ural State Univ, Lenin Ave 76, Chelyabinsk 454080, Russia
[4] Tyumen State Univ, Volodarsky St 6, Tyumen 625003, Russia
[5] Ferdowsi Univ Mashhad, Fac Sci, Dept Chem, Azazi Sq 5, Mashhad 917751436, Iran
[6] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 6397988, Singapore
[7] Natl Res Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2019年 / 256卷 / 01期
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
delocalized nonlinear vibrational mode; graphene; molecular dynamics; negative pressure; nonlinear dynamics; second harmonic generation; GAP DISCRETE BREATHERS; POISSONS RATIO; MECHANICAL-PROPERTIES; AUXETIC PROPERTIES; DYNAMICAL-SYSTEMS; CUBIC MATERIALS; SIMULATION; STABILITY; SYMMETRY; BUSHES;
D O I
10.1002/pssb.201800061
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
With the help of molecular dynamics simulations, delocalized nonlinear vibrational modes (DNVM) in graphene are analyzed. Such modes are dictated by the lattice symmetry, they are exact solutions to the atomic equations of motion, regardless the employed interatomic potential and for any mode amplitude (though for large amplitudes they are typically unstable). In this study, only one- and two-component DNVM are analyzed, they are reducible to the dynamical systems with one and two degrees of freedom, respectively. There exist 4 one-component and 12 two-component DNVM with in-plane atomic displacements. Any two-component mode includes one of the one-component modes. If the amplitudes of the modes constituting a two-component mode are properly chosen, periodic in time vibrations are observed for the two degrees of freedom at frequencies omega and 2 omega, that is, second harmonic generation takes place. For particular DNVM, the higher harmonic can have frequency nearly two times larger than the maximal frequency of the phonon spectrum of graphene. Excitation of some of DNVM results in the appearance of negative in-plane pressure in graphene. This counterintuitive result is explained by the rotational motion of carbon hexagons. Our results contribute to the understanding of nonlinear dynamics of the graphene lattice.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Delocalized nonlinear vibrational modes of triangular lattices
    Ryabov, Denis S.
    Chechin, George M.
    Upadhyaya, Abhisek
    Korznikova, Elena A.
    Dubinko, Vladimir I.
    Dmitriev, Sergey V.
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2793 - 2810
  • [2] Delocalized nonlinear vibrational modes in fcc metals
    Shcherbinin, S. A.
    Krylova, K. A.
    Chechin, G. M.
    Soboleva, E. G.
    Dmitriev, S., V
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [3] Stability of delocalized nonlinear vibrational modes in graphene lattice
    Abdullina, Dina U.
    Semenova, Maria N.
    Semenov, Aleksander S.
    Korznikova, Elena A.
    Dmitriev, Sergey V.
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (11):
  • [4] One-component delocalized nonlinear vibrational modes of square lattices
    Ryabov, D. S.
    Chechin, G. M.
    Naumov, E. K.
    Bebikhov, Yu. V.
    Korznikova, E. A.
    Dmitriev, S. V.
    NONLINEAR DYNAMICS, 2023, 111 (09) : 8135 - 8153
  • [5] Delocalized nonlinear vibrational modes of triangular lattices
    Denis S. Ryabov
    George M. Chechin
    Abhisek Upadhyaya
    Elena A. Korznikova
    Vladimir I. Dubinko
    Sergey V. Dmitriev
    Nonlinear Dynamics, 2020, 102 : 2793 - 2810
  • [6] Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials
    Ryabov, Denis S.
    V. Kosarev, Igor
    Xiong, Daxing
    Kudreyko, Aleksey A.
    Dmitriev, Sergey V.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 3797 - 3820
  • [7] Multi-component delocalized nonlinear vibrational modes in nickel
    Bachurina, O., V
    Murzaev, R. T.
    Shcherbinin, S. A.
    Kudreyko, A. A.
    Dmitriev, S., V
    Bachurin, D., V
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2023, 31 (07)
  • [8] Delocalized nonlinear vibrational modes in Ni3Al
    Bachurina, O. V.
    Murzaev, R. T.
    Shcherbinin, S. A.
    Kudreyko, A. A.
    Dmitriev, S. V.
    Bachurin, D. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132
  • [9] Dynamics of a Three-Component Delocalized Nonlinear Vibrational Mode in Graphene
    S. A. Shcherbinin
    M. N. Semenova
    A. S. Semenov
    E. A. Korznikova
    G. M. Chechin
    S. V. Dmitriev
    Physics of the Solid State, 2019, 61 : 2139 - 2144
  • [10] Dynamics of a Three-Component Delocalized Nonlinear Vibrational Mode in Graphene
    Shcherbinin, S. A.
    Semenova, M. N.
    Semenov, A. S.
    Korznikova, E. A.
    Chechin, G. M.
    Dmitriev, S., V
    PHYSICS OF THE SOLID STATE, 2019, 61 (11) : 2139 - 2144