On the annihilators of formal local cohomology modules

被引:2
作者
Rezaei, Shahram [1 ]
机构
[1] Payame Noor Univ, Fac Sci, Dept Math, Tehran, Iran
关键词
attached primes; local cohomology; annihilator; FINITENESS PROPERTIES; ATTACHED PRIMES; ARTINIANNESS;
D O I
10.14492/hokmj/1550480649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a denote an ideal in a commutative Noetherian local ring (R, m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M / aM). In this paper we calculate the annihilator of the top formal local cohomology module F-a(d) (m). In fact, we prove that Ann(R) (F-a(d) (M)) = Ann(R) (M / U (R)(a, M)), where U-R(a, M) := boolean OR{N : N <= M and dim(N / aN) < dim(M / aM)}. We give a description of U-R (a, M) and we will show that Ann(R)(F-a(d) (M)) = Ann(R) (M / boolean AND p (j is an element of Assh RM boolean AND V(a)) N (j)), where 0 = boolean AND(n)(j=1) N-j denotes a reduced primary decomposition of the zero submodule 0 in M and N-j is a p(j)-primary submodule of M, for all j = 1, ..., n. Also, we determine the radical of the annihilator of F-a(d)(M). We will prove that root Ann(R) (F-a(d) (M)) Ann(R) (M / G(R) (a, M)), where G(R) (a, M) denotes the largest submodule of M such that Assh(R) (M) boolean AND V(a) subset of Ass(R) (M / G(R) (a, M)) and Assh(R) (M) denotes the set {p is an element of AssM : dim R/p = dim M}.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 14 条
  • [1] FINITENESS PROPERTIES OF FORMAL LOCAL COHOMOLOGY MODULES AND COHEN-MACAULAYNESS
    Asgharzadeh, Mohsen
    Divaani-Aazar, Kamran
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) : 1082 - 1103
  • [2] On the annihilators and attached primes of top local cohomology modules
    Atazadeh, Ali
    Sedghi, Monireh
    Naghipour, Reza
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (03) : 225 - 236
  • [3] Annihilators of Local Cohomology Modules
    Bahmanpour, Kamal
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2509 - 2515
  • [4] On the annihilators of local cohomology modules
    Bahmanpour, Kamal
    A'zami, Jafar
    Ghasemi, Ghader
    [J]. JOURNAL OF ALGEBRA, 2012, 363 : 8 - 13
  • [5] Artinianness and Attached Primes of Formal Local Cohomology Modules
    Bijan-Zadeh, Mohammad Hasan
    Rezaei, Shahram
    [J]. ALGEBRA COLLOQUIUM, 2014, 21 (02) : 307 - 316
  • [6] Bourbaki N., 1972, COMMTATIVE ALGEBRA
  • [7] Brodmann M., 1998, Local Cohomology: An Algebraic Introduction with Geometric Applications
  • [8] Cohomological dimension of certain algebraic varieties
    Divaani-Aazar, K
    Naghipour, R
    Tousi, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) : 3537 - 3544
  • [9] Eghbali M, 2013, MATH SCAND, V113, P5
  • [10] Macdonald I. G., 1973, Sympos. Math, V11, P23