FederatedReverse: A Detection and Defense Method Against Backdoor Attacks in Federated Learning

被引:16
|
作者
Zhao, Chen [1 ,2 ]
Wen, Yu [1 ]
Li, Shuailou [1 ,2 ]
Liu, Fucheng [1 ,2 ]
Meng, Dan [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
Federated Learning; Backdoor Attack; Privacy Protection; Artificial Intelligence Security;
D O I
10.1145/3437880.3460403
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a secure machine learning technology proposed to protect data privacy and security in machine learning model training. However, recent studies show that federated learning is vulnerable to backdoor attacks, such as model replacement attacks and distributed backdoor attacks. Most backdoor defense techniques are not appropriate for federated learning since they are based on entire data samples that cannot be hold in federated learning scenarios. The newly proposed methods for federated learning sacrifice the accuracy of models and still fail once attacks persist in many training rounds. In this paper, we propose a novel and effective detection and defense technique called FederatedReverse for federated learning. We conduct extensive experimental evaluation of our solution. The experimental results show that, compared with the existing techniques, our solution can effectively detect and defend against various backdoor attacks in federated learning, where the success rate and duration of backdoor attacks can be greatly reduced and the accuracies of trained models are almost not reduced.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [41] SARS: A Personalized Federated Learning Framework Towards Fairness and Robustness against Backdoor Attacks
    Zhang, Webin
    Li, Youpeng
    An, Lingling
    Wan, Bo
    Wang, Xuyu
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (04):
  • [42] Towards Practical Backdoor Attacks on Federated Learning Systems
    Shi, Chenghui
    Ji, Shouling
    Pan, Xudong
    Zhang, Xuhong
    Zhang, Mi
    Yang, Min
    Zhou, Jun
    Yin, Jianwei
    Wang, Ting
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5431 - 5447
  • [43] IBA: Towards Irreversible Backdoor Attacks in Federated Learning
    Dung Thuy Nguyen
    Tuan Nguyen
    Tuan Anh Tran
    Doan, Khoa D.
    Wong, Kok-Seng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [44] Backdoor Attacks against Learning Systems
    Ji, Yujie
    Zhang, Xinyang
    Wang, Ting
    2017 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2017, : 191 - 199
  • [45] DLP: towards active defense against backdoor attacks with decoupled learning process
    Ying, Zonghao
    Wu, Bin
    CYBERSECURITY, 2023, 6 (01)
  • [46] Federated Learning Backdoor Defense Based on Watermark Integrity
    Hou, Yinjian
    Zhao, Yancheng
    Yao, Kaiqi
    2024 10TH INTERNATIONAL CONFERENCE ON BIG DATA AND INFORMATION ANALYTICS, BIGDIA 2024, 2024, : 288 - 294
  • [47] BDDR: An Effective Defense Against Textual Backdoor Attacks
    Shao, Kun
    Yang, Junan
    Ai, Yang
    Liu, Hui
    Zhang, Yu
    Shao, Kun (1608053548@qq.com), 1600, Elsevier Ltd (110):
  • [48] BDDR: An Effective Defense Against Textual Backdoor Attacks
    Shao, Kun
    Yang, Junan
    Ai, Yang
    Liu, Hui
    Zhang, Yu
    COMPUTERS & SECURITY, 2021, 110
  • [49] PROFL: A Privacy-Preserving Federated Learning Method with Stringent Defense Against Poisoning Attacks
    Zhong, Yisheng
    Wang, Li-Ping
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 260 - 265
  • [50] A defense mechanism against label inference attacks in Vertical Federated Learning
    Arazzi, Marco
    Nicolazzo, Serena
    Nocera, Antonino
    NEUROCOMPUTING, 2025, 624