Fabrication and characterization of hardystonite-chitosan biocomposite scaffolds

被引:28
作者
Caballero, Silvia Stella Ramirez [1 ,2 ]
Elsayed, Hamada [3 ,4 ]
Tadier, Solene [1 ]
Montembault, Alexandra [2 ]
Maire, Eric [1 ]
David, Laurent [2 ]
Delair, Thierry [2 ]
Colombo, Paolo [3 ,5 ]
Gremillard, Laurent [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, INSA Lyon, CNRS,MATEIS,UMR5510, F-69621 Villeurbanne, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Ingn Mat Polymeres,IMP Lyon1,UMR 5223, F-69622 Villeurbanne, France
[3] Univ Padua, Dipartimento Ingn Ind, Via Marzolo 9, I-35131 Padua, Italy
[4] Natl Res Ctr, Dept Ceram, El Bohous St, Cairo 12622, Egypt
[5] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16801 USA
关键词
Direct ink writing; Physical hydrogels; Polymer impregnation; Bone substitutes; Ceramic-polymer composites; Fracture; MECHANICAL-PROPERTIES; PHOSPHATE SCAFFOLDS; POLYMER; BIOCOMPATIBILITY; CERAMICS; STRENGTH; COATINGS; CHITIN; POLYCAPROLACTONE; HYDROXYAPATITE;
D O I
10.1016/j.ceramint.2019.01.206
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
2 Hardystonite scaffolds produced by ceramization of 3-D printed preceramic filled polymer were impregnated with chitosan solutions, later neutralized into physical hydrogels. Hardystonite bioceramic and chitosan physical hydrogel were chosen for their interesting biological properties as potential bone substitutes. Five impregnation protocols, differing in impregnation vacuum, chitosan concentration, chitosan to hardystonite mass ratio and base used for chitosan gelation were studied. The composition, micropore structure and surface morphology of impregnated scaffolds were determined. Impregnated hardystonite scaffolds were tested to find out the effect of impregnation protocols on elastic and dissipative mechanical properties of the composites. The capacity for energy dissipation and for load bearing increased as chitosan content increased in the composites. Thus, 3-D architectured biocomposites with enhanced mechanical properties can be manufactured following the method shown in this article.
引用
收藏
页码:8804 / 8814
页数:11
相关论文
共 41 条
[1]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[2]   Chitin and chitosan in selected biomedical applications [J].
Anitha, A. ;
Sowmya, S. ;
Kumar, P. T. Sudheesh ;
Deepthi, S. ;
Chennazhi, K. P. ;
Ehrlich, H. ;
Tsurkan, M. ;
Jayakumar, R. .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (09) :1644-1667
[3]   Fabrication, degradation behavior and cytotoxicity of nanostructured hardystonite and titania/hardystonite coatings on Mg alloys [J].
Bakhsheshi-Rad, H. R. ;
Hamzah, E. ;
Kasiri-Asgarani, M. ;
Jabbarzare, S. ;
Daroonparvar, M. ;
Najafinezhad, A. .
VACUUM, 2016, 129 :9-12
[4]   Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate [J].
Bianco, Alessandra ;
Di Federico, Erica ;
Cacciotti, Ilaria .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (12) :1832-1841
[5]   In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics [J].
Buffiere, J. -Y. ;
Maire, E. ;
Adrien, J. ;
Masse, J. -P. ;
Boller, E. .
EXPERIMENTAL MECHANICS, 2010, 50 (03) :289-305
[6]   3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization [J].
Caballero, Silvia Stella Ramirez ;
Saiz, Eduardo ;
Montembault, Alexandra ;
Tadier, Solene ;
Maire, Eric ;
David, Laurent ;
Delair, Thierry ;
Gremillard, Laurent .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2019, 30 (01)
[7]   Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration [J].
Chedly, Jamila ;
Soares, Sylvia ;
Montembault, Alexandra ;
von Boxberg, Ysander ;
Veron-Ravaille, Michele ;
Mouffle, Christine ;
Benassy, Marie-Noelle ;
Taxi, Jacques ;
David, Laurent ;
Nothias, Fatiha .
BIOMATERIALS, 2017, 138 :91-107
[8]   Chitosan: A versatile biopolymer for orthopaedic tissue-engineering [J].
Di Martino, A ;
Sittinger, M ;
Risbud, MV .
BIOMATERIALS, 2005, 26 (30) :5983-5990
[9]  
Dutta PK, 2016, SPR SER POLYM COMPOS, P1, DOI 10.1007/978-81-322-2511-9
[10]   Hardystonite bioceramics from preceramic polymers [J].
Elsayed, Hamada ;
Zocca, Andrea ;
Franchin, Giorgia ;
Bernardo, Enrico ;
Colombo, Paolo .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (03) :829-835