Generative Adversarial Imitation Learning to Search in Branch-and-Bound Algorithms

被引:2
作者
Wang, Qi [1 ]
Blackley, Suzanne, V [2 ]
Tang, Chunlei [2 ]
机构
[1] Fudan Univ, Shanghai 200438, Peoples R China
[2] Harvard Med Sch, Boston, MA 02120 USA
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II | 2022年
关键词
Combinatorial optimization; Reinforcement learning; Branch-and-bound; Generative adversarial imitation learning;
D O I
10.1007/978-3-031-00126-0_51
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent studies have shown that reinforcement learning (RL) can provide state-of-the-art performance at learning sophisticated heuristics by exploiting the shared internal structure combinatorial optimization instances in the data. However, existing RL-based methods require too much trial-and-error reliant on sophisticated reward engineering, which is laborious and inefficient for practical applications. This paper proposes a novel framework (RAIL) that combines RL and generative adversarial imitation learning (GAIL) to meet the challenge by searching in branch-and-bound algorithms. RAIL has a policy architecture with dual decoders, corresponding to the sequence decoding of RL and the edge decoding of GAIL, respectively. The two complement each other and restrict each other to improve the learned policy and reward function iteratively.
引用
收藏
页码:673 / 680
页数:8
相关论文
共 50 条
  • [21] On estimating workload in interval branch-and-bound global optimization algorithms
    Berenguel, Jose L.
    Casado, L. G.
    Garcia, I.
    Hendrix, Eligius M. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 821 - 844
  • [22] Techniques for accelerating branch-and-bound algorithms dedicated to sparse optimization
    Samain, Gwenael
    Ninin, Jordan
    Bourguignon, Sebastien
    OPTIMIZATION METHODS & SOFTWARE, 2024, 40 (01) : 4 - 41
  • [23] Branch-and-bound algorithms for simple assembly line balancing problem
    Liu, S. B.
    Ng, K. M.
    Ong, H. L.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 36 (1-2) : 169 - 177
  • [24] On estimating workload in interval branch-and-bound global optimization algorithms
    José L. Berenguel
    L. G. Casado
    I. García
    Eligius M. T. Hendrix
    Journal of Global Optimization, 2013, 56 : 821 - 844
  • [25] Multiagent Autonomous Source Search Using Submodularity and Branch-and-Bound
    Xu, Xiaoling
    Marelli, Damian
    Meng, Wei
    Cai, Qianqian
    Fu, Minyue
    UNMANNED SYSTEMS, 2024, 12 (01) : 19 - 28
  • [26] Branch-and-Bound Guided Search for Critical Elements in State Estimation
    Augusto, Andre Abel
    Do Coutto Filho, Milton Brown
    Stacchini de Souza, Julio Cesar
    Ribeiro Guimaraens, Marcio Andre
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (03) : 2292 - 2301
  • [27] Learning Temporal Strategic Relationships using Generative Adversarial Imitation Learning
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 113 - 121
  • [28] A Branch-and-Bound Approach for Tautomer Enumeration
    Thalheim, Torsten
    Wagner, Barbara
    Kuehne, Ralph
    Middendorf, Martin
    Schueuermann, Gerrit
    MOLECULAR INFORMATICS, 2015, 34 (05) : 263 - 275
  • [29] Generative Adversarial Imitation Learning Based Bicycle Behaviors Simulation on Road Segments
    Wei, Shuqiao
    Ni, Ying
    Sun, Jian
    Qiu, Hongtong
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (04): : 105 - 115
  • [30] An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning
    Liu, Ming
    Lin, Fanrong
    Zhang, Zhen
    Jia, Yungang
    Cui, Jianming
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 179 - 190