Bardeen regular black hole as a quantum-corrected Schwarzschild black hole

被引:33
作者
Maluf, R., V [1 ]
Neves, Juliano C. S. [2 ]
机构
[1] Univ Fed Ceara, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2019年 / 28卷 / 03期
关键词
Regular black holes; black hole thermodynamics; cosmological constant; generalized uncertainty principle; quantum gravity; ENTROPY; ORDERS;
D O I
10.1142/S0218271819500482
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bardeen regular black hole is commonly considered as a solution of general relativity coupled to a nonlinear electrodynamics. In this paper, it is shown that the Bardeen solution may be interpreted as a quantum-corrected Schwarzschild black hole. This new interpretation is obtained by means of a generalized uncertainty principle applied to the Hawking temperature. Moreover, using the regular black hole of Bardeen, it. is possible to evaluate the quantum gravity parameter of the generalized uncertainty principle or, assuming the recent upper bounds for such a parameter, to verify an enormous discrepancy between a cosmological constant and that measured by recent cosmological observations (similar to 10(1)(20)).
引用
收藏
页数:8
相关论文
共 20 条
[1]   Planck 2015 results XIII. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Battye, R. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Chluba, J. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
Agheben M., 2005, JHEP, V05, P014
[3]   Quantum-corrected self-dual black hole entropy in tunneling formalism with GUP [J].
Anacleto, M. A. ;
Brito, F. A. ;
Passos, E. .
PHYSICS LETTERS B, 2015, 749 :181-186
[4]   The Bardeen model as a nonlinear magnetic monopole [J].
Ayón-Beato, E ;
García, A .
PHYSICS LETTERS B, 2000, 493 (1-2) :149-152
[5]  
Bardeen J. M., 1968, P INT C GR5, pp174
[6]   The Cosmological Constant [J].
Carroll S.M. .
Living Reviews in Relativity, 2001, 4 (1)
[7]   Universality of Quantum Gravity Corrections [J].
Das, Saurya ;
Vagenas, Elias C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (22)
[8]  
GLINER EB, 1966, SOV PHYS JETP-USSR, V22, P378
[9]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220
[10]   Entropy of the Schwarzschild black hole to all orders in the Planck length [J].
Kim, Yong-Wan ;
Park, Young-Jai .
PHYSICS LETTERS B, 2007, 655 (3-4) :172-177