Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze)

被引:75
|
作者
Wang, YunSheng [1 ,2 ]
Gao, LiPing [2 ]
Wang, ZhengRong [2 ]
Liu, YaJun [1 ]
Sun, MeiLian [1 ]
Yang, DongQing [1 ]
Wei, ChaoLing [1 ]
Shan, Yu [1 ]
Xia, Tao [1 ]
机构
[1] Anhui Agr Univ, Minist Educ China, Key Lab Tea Biochem & Biotechnol, Hefei, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Tea; Light inducement; Phenylpropanoid biosynthesis; Gene expression; SSH cDNA library; PROANTHOCYANIDIN BIOSYNTHESIS; PLANT-GROWTH; LIGNIN; PROTEIN; METHYLTRANSFERASE; ANTHOCYANIN; REDUCTASE; CLONING; ENZYME;
D O I
10.1016/j.scienta.2011.10.017
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Tea (Camellia sinensis (L) O. Kuntze) is a commercially important crop that is valued for its secondary metabolites. Light is an important environmental parameter that regulates plant growth and development and influences the phenylpropanoid metabolism in plants. To investigate the molecular mechanism by which light regulates phenylpropanoid metabolism, we established light-induced suppression subtractive hybridization (SSH) cDNA libraries of tea calli. A total of 265 clones from the library were selected, sequenced, and analyzed in this study. Nine diverse ESTs involved in phenylpropanoid biosynthesis were detected in the library. A new CsDFR gene (CsDFR2), higher increment of the expression activated by light than the previously reported CsDFR gene (CsDFR1), was cloned. The key phenylpropanoid compounds and representative genes expression analysis implied that light could be effective for activation of the biosynthesis of phenylpropanoids. Compared to the darkness control, levels of lignins, catechins, and PAs were increased 3.46.3.00, and 1.21-fold, in light-induced calli, respectively. And lignin biosynthesis genes, involved in CCoAOMT, HCT and CCR, were identified in the light-induced SSH library. Therefore it was assumed that lignins might be the main phenylpropanoid metabolites activated by light in tea calli. In addition, our researches found that catechins, as the main secondary metabolites, significantly decreased in the tea calli compared to those in tea mature leaves, While PAs (polymer of catechins) in calli did not decrease compared to mature leaves. The data suggest that polymerization reaction might be the main pathway of flavonoid metabolism in tea callus. The SSH library established in this study represents a valuable resource for better understanding the mechanisms of light-induced secondary metabolism in tea plants. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 50 条
  • [1] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Jeyaraj, Anburaj
    Chandran, Viswanathan
    Gajjeraman, Prabu
    PLANT CELL REPORTS, 2014, 33 (07) : 1053 - 1069
  • [2] Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze)
    Wang, YunSheng
    Gao, LiPing
    Shan, Yu
    Liu, YaJun
    Tian, YanWei
    Xia, Tao
    SCIENTIA HORTICULTURAE, 2012, 141 : 7 - 16
  • [3] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Anburaj Jeyaraj
    Viswanathan Chandran
    Prabu Gajjeraman
    Plant Cell Reports, 2014, 33 : 1053 - 1069
  • [4] Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
    Mainaak Mukhopadhyay
    Tapan K. Mondal
    Pradeep K. Chand
    Plant Cell Reports, 2016, 35 : 255 - 287
  • [5] Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
    Mukhopadhyay, Mainaak
    Mondal, Tapan K.
    Chand, Pradeep K.
    PLANT CELL REPORTS, 2016, 35 (02) : 255 - 287
  • [6] Effect of Liming of Tea Seedling (Camellia sinensis (L.)O. Kuntze)
    Chokami, Ali Fatemi
    Gonbad, Reza Azadi
    ASIAN JOURNAL OF CHEMISTRY, 2009, 21 (04) : 3301 - 3303
  • [7] Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]
    Singh, Kashmir
    Kumar, Sanjay
    Yadav, Sudesh Kumar
    Ahuja, Paramvir Singh
    PLANT BIOTECHNOLOGY REPORTS, 2009, 3 (01) : 95 - 101
  • [8] Cloning and differential expression of QMlike protein homologue from tea [Camellia sinensis (L.) O. Kuntze]
    Kashmir Singh
    Asosii Paul
    Sanjay Kumar
    Paramvir Singh Ahuja
    Molecular Biology Reports, 2009, 36 : 921 - 927
  • [9] Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]
    Rani, Arti
    Singh, Kashmir
    Ahuja, Paramvir S.
    Kumar, Sanjay
    GENE, 2012, 495 (02) : 205 - 210
  • [10] Cloning and differential expression of QM like protein homologue from tea [Camellia sinensis (L.) O. Kuntze]
    Singh, Kashmir
    Paul, Asosii
    Kumar, Sanjay
    Ahuja, Paramvir Singh
    MOLECULAR BIOLOGY REPORTS, 2009, 36 (05) : 921 - 927