Spectral theory of the multi-frequency quasi-periodic operator with a Gevrey type perturbation

被引:5
作者
Shi, Yunfeng [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 148卷 / 01期
基金
国家重点研发计划;
关键词
ABSOLUTELY CONTINUOUS-SPECTRUM; LATTICE SCHRODINGER-OPERATORS; METAL-INSULATOR-TRANSITION; ANDERSON LOCALIZATION; HOLDER CONTINUITY; REDUCIBILITY; ABSENCE;
D O I
10.1007/s11854-022-0230-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the multi-frequency quasi-periodic operator with a Gevrey type perturbation. We first establish the large deviation theorem (LDT) for the multi-dimensional operator with a sub-exponential (or Gevrey) long-range hopping, and then prove the pure point spectrum property. Based on the LDT and the Aubry duality, we show the absence of a point spectrum for the 1D exponential long-range operator with a multi-frequency and a Gevrey potential. We also prove the spectrum has positive Lebesgue measure.
引用
收藏
页码:305 / 338
页数:34
相关论文
共 50 条
[1]  
Amor SH, 2009, COMMUN MATH PHYS, V287, P565, DOI 10.1007/s00220-008-0688-x
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]  
Avila, LYAPUNOV EXPON UNPUB
[4]  
Avila A, 2010, J EUR MATH SOC, V12, P93
[5]  
Avila A., ARXIV
[6]   Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling [J].
Avila, Artur ;
Damanik, David .
INVENTIONES MATHEMATICAE, 2008, 172 (02) :439-453
[7]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[8]   SHARP PHASE TRANSITIONS FOR THE ALMOST MATHIEU OPERATOR [J].
Avila, Artur ;
You, Jiangong ;
Zhou, Qi .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) :2697-2718
[9]  
Avila A, 2011, GEOM FUNCT ANAL, V21, P1001, DOI 10.1007/s00039-011-0135-6
[10]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342