Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions

被引:21
作者
Adly, S. [1 ,2 ]
Hantoute, A. [3 ]
Thera, M. [1 ,2 ]
机构
[1] Univ Limoges, F-87060 Limoges, France
[2] Lab XLIM, F-87060 Limoges, France
[3] Univ Chile CMM, Santiago, Chile
基金
澳大利亚研究理事会;
关键词
Differential inclusions; Maximal monotone operators; Lipschitz perturbations; Lower semicontinuous Lyapunov pairs and functions; Invariance of sets; Subdifferential sets; Contingent derivatives; SUFFICIENT CONDITIONS; VIABILITY THEOREM; STABILITY THEORY; FLOW-INVARIANCE; EVOLUTION;
D O I
10.1016/j.na.2010.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to provide new explicit criteria to characterize weak lower semicontinuous Lyapunov pairs or functions associated to first-order differential inclusions in Hilbert spaces. These inclusions are governed by a Lipschitzian perturbation of a maximally monotone operator. The dual criteria we give are expressed by means of the proximal and basic subdifferentials of the nominal functions while primal conditions are described in terms of the contingent directional derivative. We also propose a unifying review of many other criteria given in the literature. Our approach is based on advanced tools of variational analysis and generalized differentiation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:985 / 1008
页数:24
相关论文
共 38 条
[1]   A stability theory for second-order nonsmooth dynamical systems with application to friction problems [J].
Adly, S ;
Goeleven, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :17-51
[2]  
[Anonymous], 2006, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[4]  
[Anonymous], 1990, CLASSICS APPL MATH
[5]  
Attouch H., 1994, J. Convex Analysis, V1, P1
[6]  
Aubin J., 1991, SYSTEMS AND CONTROL, DOI 10.1007/978-0-8176-4910-4
[7]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI
[8]   Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions [J].
Bacciotti, A ;
Ceragioli, F ;
Mazzi, L .
SET-VALUED ANALYSIS, 2000, 8 (03) :299-309
[9]   Stability in the continuous case [J].
Bacciotti, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (02) :488-498
[10]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113