Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites

被引:43
作者
Akhtar, M. Wasim [1 ,2 ]
Kim, Jong Seok [2 ]
Memon, Muddassir Ali [1 ]
Baloch, Muhammad Moazam [1 ]
机构
[1] Mehran Univ Engn & Technol, Dept Met & Mat Engn, Jamshoro, Pakistan
[2] Chonbuk Natl Univ, Sch Semicond & Chem Engn, Jeonju 54896, South Korea
关键词
Hybrid filler; Thermal conductivity; Interface; Hybridization; Epoxy composite; MECHANICAL-PROPERTIES; CARBON NANOTUBES; CONDUCTIVITY; HETEROSTRUCTURES; NANOCOMPOSITES; DISPERSION; SHEETS; MATRIX; OXIDE;
D O I
10.1016/j.compscitech.2020.108183
中图分类号
TB33 [复合材料];
学科分类号
摘要
We report an effective and reproducible method for hybridization of surface modified hexagonal boron nitride (h-BNNS) and multilayer graphene (MLG) by silane coupling agents. Simultaneously, silver (Ag) nanoparticles were grown on the interface of hybrid filler as a bridging agent during the hybridization process that activates free transportation of phonons when incorporated with epoxy matrix. Hybridization of surface modified h-BNNS and MLG improved the interfacial properties and the dispersion of the filler in the epoxy matrix. The hybrid filler BNNS-Ag-MLG (H-BSG) incorporated in the epoxy matrix and characterized for thermal properties. The thermal analysis confirmed that exceptionally improved thermal conductive and excellent thermally stable epoxy composite was fabricated. It was found that similar to 26 folds improvement in in-plane thermal conductivity was recorded by addition of 10 wt % of H-BSG in comparison with neat epoxy. This study indicates a step towards developing a strong interfacial connection between MLG and h-BNNS to make effective hybrid filler and emerging candidate for thermal interface applications.
引用
收藏
页数:11
相关论文
共 54 条
[31]   Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering [J].
Nika, D. L. ;
Pokatilov, E. P. ;
Askerov, A. S. ;
Balandin, A. A. .
PHYSICAL REVIEW B, 2009, 79 (15)
[32]   Tailored high performance shape memory epoxy-silica nanocomposites. Structure design [J].
Ponyrko, S. ;
Donato, R. K. ;
Matejka, L. .
POLYMER CHEMISTRY, 2016, 7 (03) :560-572
[33]  
Prasher R.S., 2005, Intel Technol. J, V9
[34]   Functionalized graphene sheets for polymer nanocomposites [J].
Ramanathan, T. ;
Abdala, A. A. ;
Stankovich, S. ;
Dikin, D. A. ;
Herrera-Alonso, M. ;
Piner, R. D. ;
Adamson, D. H. ;
Schniepp, H. C. ;
Chen, X. ;
Ruoff, R. S. ;
Nguyen, S. T. ;
Aksay, I. A. ;
Prud'homme, R. K. ;
Brinson, L. C. .
NATURE NANOTECHNOLOGY, 2008, 3 (06) :327-331
[35]   Mechanical and thermal properties of zinc powder filled high density polyethylene composites [J].
Rusu, M ;
Sofian, N ;
Rusu, D .
POLYMER TESTING, 2001, 20 (04) :409-417
[36]   Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J].
Sandler, J ;
Shaffer, MSP ;
Prasse, T ;
Bauhofer, W ;
Schulte, K ;
Windle, AH .
POLYMER, 1999, 40 (21) :5967-5971
[37]   Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites [J].
Seyhan, A. Tugrul ;
Goncu, Yapincak ;
Durukan, Oya ;
Akay, Atakan ;
Ay, Nuran .
JOURNAL OF SOLID STATE CHEMISTRY, 2017, 249 :98-107
[38]   Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials [J].
Shahil, Khan M. F. ;
Balandin, Alexander A. .
NANO LETTERS, 2012, 12 (02) :861-867
[39]   KINETIC ANALYSIS OF THERMOGRAVIMETRIC DATA [J].
SHARP, JH ;
WENTWORTH, SA .
ANALYTICAL CHEMISTRY, 1969, 41 (14) :2060-+
[40]  
Tavman IH, 1996, J APPL POLYM SCI, V62, P2161