共 92 条
Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?
被引:299
作者:
Krishna, Anurag
[1
]
Gottis, Sebastien
[1
]
Nazeeruddin, Mohammad Khaja
[2
]
Sauvage, Frederic
[1
]
机构:
[1] Univ Picardie Jules Verne, LRCS, Inst Chim Picardie FR 3085, UMR CNRS 7314, 33 Rue St Leu, FR-80039 Amiens, France
[2] Ecole Polytech Fed Lausanne, Grp Mol Engn Funct Mat, CH-1951 Sion, Switzerland
关键词:
2D perovskites;
3D perovskites;
charge transport;
interfacial engineering;
stability;
ORGANOMETAL TRIHALIDE PEROVSKITE;
ORGANIC-INORGANIC PEROVSKITES;
WHITE-LIGHT EMISSION;
HALIDE PEROVSKITES;
PHOTOVOLTAIC EFFICIENCY;
LAYERED-PEROVSKITE;
CARRIER DYNAMICS;
THIN-FILMS;
ELECTRON;
CATIONS;
D O I:
10.1002/adfm.201806482
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The cost-effective processability and high efficiency of the organic-inorganic metal halide perovskite solar cells (PSCs) have shown tremendous potential to intervene positively in the generation of clean energy. However, prior to an industrial scale-up process, there are certain critical issues such as the lack of stability against over moisture, light, and heat, which have to be resolved. One of the several proposed strategies to improve the stability that has lately emerged is the development of lower-dimensional (2D) perovskite structures derived from the Ruddlesden-Popper (RP) phases. The excellent stability under ambient conditions shown by 2D RP phase perovskites has made the scalability expectations burgeon since it is one of the most credible paths toward stable PSCs. In this review, the 2D/3D mixed system for photovoltaics (PVs) is elaborately discussed with the focus on the crystal structure, optoelectronic properties, charge carrier dynamics, and their impact on the photovoltaic performances. Finally, some of the further challenges are highlighted while outlining the perspectives of 2D/3D perovskites for high-efficiency stable solar cells.
引用
收藏
页数:20
相关论文