Robust incentive Stackelberg strategy for Markov jump linear stochastic systems via static output feedback

被引:6
|
作者
Mukaidani, Hiroaki [1 ]
Saravanakumar, Ramasamy [1 ]
Xu, Hua [2 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan
[2] Univ Tsukuba, Grad Sch Business Sci, Bunkyo Ku, 3-29-1 Otsuka, Tokyo 1120012, Japan
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 09期
关键词
computational complexity; differential equations; linear systems; linear matrix inequalities; feedback; Lyapunov methods; stochastic systems; iterative methods; game theory; robust control; CCSALTEs; SOF incentive Stackelberg strategies; robust incentive Stackelberg strategy; Markov jump linear stochastic system; robust static output feedback incentive Stackelberg game; Ito differential equations; higher-order cross-coupled stochastic algebraic Lyapunov type equations; classical Lagrange multiplier technique; SOF strategies; bilinear matrix inequality; NP-hard problem; Krasnoselskii-Mann iterative algorithm; CONVERGENCE;
D O I
10.1049/iet-cta.2019.0917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a robust static output feedback (SOF) incentive Stackelberg game for a Markov jump linear stochastic system governed by Ito differential equations with multiple leaders and multiple followers is investigated. The existence conditions for the SOF incentive Stackelberg strategies are derived in terms of the solvability of a set of higher-order cross-coupled stochastic algebraic Lyapunov type equations (CCSALTEs). A classical Lagrange multiplier technique is employed to solve the CCSALTEs; therefore, the solution of the bilinear matrix inequality, which is a common NP-hard problem when designing SOF strategies, is not required. A heuristic algorithm is developed based on the CCSALTEs. In particular, it is shown that a robust convergence is guaranteed by combining the Krasnoselskii-Mann iterative algorithm with a new convergence condition. The performance of the proposed algorithm is discussed and a simple practical example is provided to demonstrate the effectiveness of the proposed algorithm and the SOF incentive Stackelberg strategies.
引用
收藏
页码:1246 / 1254
页数:9
相关论文
共 50 条
  • [1] Robust Incentive Stackelberg Strategy for Markov Jump Delay Stochastic Systems via Static Output Feedback
    Mukaidani, Hiroaki
    Ramasamy, Saravanakumar
    Xu, Hua
    Zhuang, Weihua
    IFAC PAPERSONLINE, 2020, 53 (02): : 6709 - 6714
  • [2] Robust static output feedback Nash strategy for uncertain Markov jump linear stochastic systems
    Mukaidani, Hiroaki
    Xu, Hua
    Zhuang, Weihua
    IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (11): : 1559 - 1570
  • [3] Static Output Feedback Stackelberg Strategy of Infinite Horizon Markov Jump Linear Stochastic Systems with H∞ Constraint
    Mukaidani, Hiroaki
    Xu, Hua
    Dragan, Vasile
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1935 - 1940
  • [4] Static Output-Feedback Incentive Stackelberg Game for Discrete-Time Markov Jump Linear Stochastic Systems With External Disturbance
    Mukaidani, Hiroaki
    Xu, Hua
    Dragan, Vasile
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04): : 701 - 706
  • [5] Robust Nash Static Output Feedback Strategy for Uncertain Markov Jump Delay Stochastic Systems
    Mukaidani, Hiroaki
    Saravanakumar, Ramasamy
    Xu, Hua
    Zhuang, Weihua
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 5826 - 5831
  • [6] Robust static output feedback control for hidden Markov jump linear systems
    de Oliveira, A. M.
    Costa, O. L., V
    Gabriel, G. W.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (06) : 1298 - 1316
  • [7] Robust Stackelberg Games via Static Output Feedback Strategy for Uncertain Stochastic Systems with State Delay
    Mukaidani, Hiroaki
    Ramasamy, Saravanakumar
    Xu, Hua
    Zhuang, Weihua
    IFAC PAPERSONLINE, 2020, 53 (02): : 7154 - 7159
  • [8] H∞ Constraint Pareto Suboptimal Static Output Feedback Strategy for Uncertain Markov Jump Linear Stochastic Systems
    Mukaidani, Hiroaki
    Xu, Hua
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1867 - 1872
  • [9] Robust predictive control via output feedback for Markov jump systems
    Liu, Xiao-Hua
    Läu, Na
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2013, 30 (11): : 1392 - 1400
  • [10] Stackelberg Strategy for Uncertain Markov Jump Delay Stochastic Systems
    Mukaidani, Hiroaki
    Saravanakumar, Ramasamy
    Xu, Hua
    Zhuang, Weihua
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 1006 - 1011