Gradient microstructure and interfacial strength of CoCrFeMnNi high-entropy alloy in solid-state ultrasonic welding

被引:25
作者
Lin, Jhe-Yu [1 ,3 ]
Lai, Zen-Hao [2 ]
Otsuki, Tatsuya [1 ]
Yen, Hung-Wei [2 ]
Nambu, Shoichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Mat Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Natl Taiwan Univ, Dept Mat Sci & Engn, 1 Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[3] Natl Taipei Univ Technol, Dept Mech Engn, 1 Sec 3,Zhongxiao E Rd, Taipei 10608, Taiwan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 825卷
关键词
Ultrasonic welding; Electron backscattered diffraction; Transmission kikuchi diffraction; High-entropy alloys; BONDING INTERFACE; MECHANICAL-PROPERTIES; EVOLUTION; RESISTANCE; DUCTILITY;
D O I
10.1016/j.msea.2021.141885
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study investigated the microstructure gradient and interfacial strength of CoCrFeMnNi high-entropy alloy bonded by ultrasonic welding (USW). It was found that bonding occurred after welding for 1.0 s and bonding strength reached about 1500 N (30 MPa of shear strength) after welding for 7.0 s. Such interfacial bonding was featured with the ultrafine microstructure with a grain size of 100-200 nm, which resulted from discontinuous dynamic recrystallization induced by severe plastic strain and a peak temperature of 511 degrees C. Strain and temperature due to severe plastic deformation in the ultrasonic sliding decreased with increasing distance from the interface. This contributed to a microstructural gradient from discontinuous dynamic recrystallization to continuous dynamic recrystallization and finally dislocation cells. This gradient microstructure was confined to areas within about 2 mu m from the interface and showed no solidification defects or transformation of detrimental phases.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   Warm ductility enhanced by austenite reversion in ultrafine-grained duplex steel [J].
Cheng, Guan-Ju ;
Gault, Baptiste ;
Huang, Cheng-Yao ;
Huang, Ching-Yuan ;
Yen, Hung-Wei .
ACTA MATERIALIA, 2018, 148 :344-354
[3]   Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer [J].
Ding, Wen ;
Liu, Ning ;
Fan, Jiacheng ;
Cao, Jing ;
Wang, Xiaojing .
INTERMETALLICS, 2021, 129
[4]   Diffusion bonding of titanium to 304 stainless steel [J].
Ghosh, M ;
Bhanumurthy, K ;
Kale, GB ;
Krishnan, J ;
Chatterjee, S .
JOURNAL OF NUCLEAR MATERIALS, 2003, 322 (2-3) :235-241
[5]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[6]   High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy [J].
Jeong, H. T. ;
Park, H. K. ;
Park, K. ;
Na, T. W. ;
Kim, W. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 756 :528-537
[7]  
Jo MG, 2018, MET MATER INT, V24, P73
[8]   Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J].
Jo, Y. H. ;
Jung, S. ;
Choi, W. M. ;
Sohn, S. S. ;
Kim, H. S. ;
Lee, B. J. ;
Kim, N. J. ;
Lee, S. .
NATURE COMMUNICATIONS, 2017, 8
[9]  
Kim YK, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-65073-2
[10]   Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy [J].
Koyama, Motomichi ;
Ichii, Kenshiro ;
Tsuzaki, Kaneaki .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) :17163-17167