Spectral-Domain Phase Microscopy for Thickness Encoded Suspension Array

被引:0
作者
Guo, Cuixia [1 ,2 ]
Shen, Zhiyuan [2 ]
Suo, Yanyan [3 ]
Wu, Jian-Ping [4 ,5 ]
Zhou, Xuesi [2 ]
Guan, Tian [2 ]
Chen, Xuejing [1 ,2 ]
Zhong, Suyi [2 ]
Ji, Yanhong [6 ]
He, Yonghong [2 ]
Chen, Fangyi [5 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen Key Lab Minimal Invas Med Technol, Shenzhen 518055, Peoples R China
[3] Shenzhen Entry Exit Inspect & Quarantine Bur, Shenzhen 518033, Peoples R China
[4] Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen 518055, Peoples R China
[6] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510631, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Optical coherence tomography; spectral-domain phase microscopy; fluorescence microscopy; suspension array;
D O I
10.1109/LPT.2020.2971508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A system containing spectral-domain phase microscopy and fluorescence microscopy has been developed to decode and detect thickness-encoded suspension arrays. The spectral-domain phase imaging path is used for decoding the thickness of the micro glass pieces while the fluorescence imaging path is used for quantifying the targeted analytes. The spectral-domain phase microscopy uses a spectral domain phase retrieval technique so that it has a high-dynamic thickness imaging range and submicron-scale thickness resolution, increasing the encoding efficiency and decoding precision. The thickness decoding capability of the system has been demonstrated by multiplexed immunoassay experiments. The quantitative analysis capability has been verified by concentration gradient experiments.
引用
收藏
页码:461 / 464
页数:4
相关论文
共 14 条
[1]   Spectral-domain phase microscopy [J].
Choma, MA ;
Ellerbee, AK ;
Yang, CH ;
Creazzo, TL ;
Izatt, JA .
OPTICS LETTERS, 2005, 30 (10) :1162-1164
[2]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069
[3]   Multiplexed Sensing of Ions with Barcoded Polyelectrolyte Capsules [J].
del Mercato, Loretta L. ;
Abbasi, Azhar Z. ;
Ochs, Markus ;
Parak, Wolfgang J. .
ACS NANO, 2011, 5 (12) :9668-9674
[4]   Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry [J].
Gao, XH ;
Nie, SM .
ANALYTICAL CHEMISTRY, 2004, 76 (08) :2406-2410
[5]   Bio-Rad'sBio-Plex® suspension array system, xMAP technology overview [J].
Houser, Brett .
ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2012, 118 (04) :192-196
[6]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[7]   Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging [J].
Joo, C ;
Akkin, T ;
Cense, B ;
Park, BH ;
de Boer, JE .
OPTICS LETTERS, 2005, 30 (16) :2131-2133
[8]   Production of Quantum Dot Barcodes Using Biological Self-Assembly [J].
Rauf, Sakandar ;
Glidle, Andrew ;
Cooper, Jon M. .
ADVANCED MATERIALS, 2009, 21 (40) :4020-+
[9]   Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array [J].
Shen, Zhiyuan ;
He, Yonghong ;
Zhang, Gong ;
He, Qinghua ;
Li, Dongmei ;
Ji, Yanhong .
OPTICS LETTERS, 2018, 43 (04) :739-742
[10]   The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited] [J].
Swanson, Eric A. ;
Fujimoto, James G. .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (03) :1638-1664