A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and Permits Prediction by Deep Learning

被引:72
作者
Erijman, Ariel [1 ,5 ]
Kozlowski, Lukasz [2 ,6 ]
Sohrabi-Jahromi, Salma [2 ]
Fishburn, James [1 ]
Warfield, Linda [1 ]
Schreiber, Jacob [4 ]
Noble, William S. [3 ,4 ]
Soeding, Johannes [2 ]
Hahn, Steven [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[2] Max Planck Inst Biophys Chem, Quantitat & Computat Biol, Gottingen, Germany
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[5] New England Biolabs Inc, Ipswich, MA USA
[6] Univ Warsaw, Inst Informat, Warsaw, Poland
关键词
PROTEIN DISORDER; BINDING; TRANSACTIVATION; SPECIFICITY; EXPRESSION; MECHANISM; HELIX; GCN4; GAL4; SP1;
D O I
10.1016/j.molcel.2020.04.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy'' interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.
引用
收藏
页码:890 / +
页数:19
相关论文
共 85 条
[1]  
Abedi M, 2001, BMC Mol Biol, V2, P10, DOI 10.1186/1471-2199-2-10
[2]  
Ancona M., 2018, ARXIV171106104
[3]   A high-throughput method to identify trans-activation domains within transcription factor sequences [J].
Arnold, Cosmas D. ;
Nemcko, Filip ;
Woodfin, Ashley R. ;
Wienerroither, Sebastian ;
Vlasova, Anna ;
Schleiffer, Alexander ;
Pagani, Michaela ;
Rath, Martina ;
Stark, Alexander .
EMBO JOURNAL, 2018, 37 (16)
[4]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[5]   An improved yeast transformation method for the generation of very large human antibody libraries [J].
Benatuil, Lorenzo ;
Perez, Jennifer M. ;
Belk, Jonathan ;
Hsieh, Chung-Ming .
PROTEIN ENGINEERING DESIGN & SELECTION, 2010, 23 (04) :155-159
[6]   Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains [J].
Boija, Ann ;
Klein, Isaac A. ;
Sabari, Benjamin R. ;
Dall'Agnese, Alessandra ;
Coffey, Eliot L. ;
Zamudio, Alicia V. ;
Li, Charles H. ;
Shrinivas, Krishna ;
Manteiga, John C. ;
Hannett, Nancy M. ;
Abraham, Brian J. ;
Afeyan, Lena K. ;
Guo, Yang E. ;
Rimel, Jenna K. ;
Fant, Charli B. ;
Schuijers, Jurian ;
Lee, Tong Ihn ;
Taatjes, Dylan J. ;
Young, Richard A. .
CELL, 2018, 175 (07) :1842-+
[7]  
Brachmann CB, 1998, YEAST, V14, P115
[8]   Transcriptional Addiction in Cancer [J].
Bradner, James E. ;
Hnisz, Denes ;
Young, Richard A. .
CELL, 2017, 168 (04) :629-643
[9]   A EUKARYOTIC TRANSCRIPTIONAL ACTIVATOR BEARING THE DNA SPECIFICITY OF A PROKARYOTIC REPRESSOR [J].
BRENT, R ;
PTASHNE, M .
CELL, 1985, 43 (03) :729-736
[10]   The Acidic Transcription Activator Gcn4 Binds the Mediator Subunit Gal11/Med15 Using a Simple Protein Interface Forming a Fuzzy Complex [J].
Brzovic, Peter S. ;
Heikaus, Clemens C. ;
Kisselev, Leonid ;
Vernon, Robert ;
Herbig, Eric ;
Pacheco, Derek ;
Warfield, Linda ;
Littlefield, Peter ;
Baker, David ;
Klevit, Rachel E. ;
Hahn, Steven .
MOLECULAR CELL, 2011, 44 (06) :942-953