Hard X-ray Generation from ZnO Nanowire Targets in a Non-Relativistic Regime of Laser-Solid Interactions

被引:11
作者
Samsonova, Zhanna [1 ,2 ,3 ]
Hoefer, Sebastian [2 ]
Hollinger, Richard [1 ,2 ,3 ]
Kaempfer, Tino [1 ]
Uschmann, Ingo [1 ,2 ]
Roeder, Robert [4 ]
Trefflich, Lukas [4 ]
Rosmej, Olga [5 ,6 ]
Foerster, Eckhart [1 ,2 ]
Ronning, Carsten [3 ,4 ]
Kartashov, Daniil [1 ,3 ]
Spielmann, Christian [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Opt & Quantum Elect, Max Wien Pl 1, D-07743 Jena, Germany
[2] Helmholtz Inst Jena, Frobelstieg 3, D-07743 Jena, Germany
[3] Friedrich Schiller Univ, Abbe Ctr Photon, Albert Einstein Str 6, D-07745 Jena, Germany
[4] Friedrich Schiller Univ, Inst Solid State Phys, Helmholtzweg 3, D-07743 Jena, Germany
[5] GSI Helmholtz Ctr Heavy Ion Res, Planckstr 1, D-64220 Darmstadt, Germany
[6] Goethe Univ, Inst Appl Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 10期
关键词
X-ray generation; laser-matter interaction; ultrashort laser pulses; X-ray spectroscopy; laser plasma emission; nanostructured arrays; HIGH-REPETITION-RATE; PLASMA; ABSORPTION; ELECTRONS; EMISSION; PULSES;
D O I
10.3390/app8101728
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a detailed investigation of X-ray emission from both flat and nanowire zinc oxide targets irradiated by 60 fs 5 x 10(16) W/cm(2) intensity laser pulses at a 0.8 mu m wavelength. It is shown that the fluence of the emitted hard X-ray radiation in the spectral range 150-800 keV is enhanced by at least one order of magnitude for nanowire targets compared to the emission from a flat surface, whereas the characteristic K-proportional to line emission (8.64 keV) is insensitive to the target morphology. Furthermore, we provide evidence for a dramatic increase of the fast electron flux from the front side of the nanostructured targets. We suggest that targets with nanowire morphology may advance development of compact ultrafast X-ray sources with an enhanced flux of hard X-ray emission that could find wide applications in highenergy density (HED) physics.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Interaction of Ultra High Intensity Laser Pulse with Structured Target and Fast Particle Generation in a Stable Mode [J].
Andreev, A. A. ;
Platonov, K. Yu. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2013, 53 (02) :173-178
[2]  
Beg FN, 1997, PHYS PLASMAS, V4, P447, DOI 10.1063/1.872103
[3]   Ultrafast laser-driven x-ray spectrometer for x-ray absorption spectroscopy of transition metal complexes [J].
Benesch, F ;
Lee, TW ;
Jiang, Y ;
Rose-Petruck, CG .
OPTICS LETTERS, 2004, 29 (09) :1028-1030
[4]  
Berger M.J., 2005, PSTAR ASTAR COMPUTER, V39
[5]   Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures [J].
Borchers, C ;
Müller, S ;
Stichtenoth, D ;
Schwen, D ;
Ronning, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (04) :1656-1660
[6]   NOT-SO-RESONANT, RESONANT ABSORPTION [J].
BRUNEL, F .
PHYSICAL REVIEW LETTERS, 1987, 59 (01) :52-55
[7]   HOT-ELECTRON GENERATION AND TRANSPORT IN HIGH-INTENSITY LASER INTERACTION [J].
BURNETT, NH ;
ENRIGHT, GD .
CANADIAN JOURNAL OF PHYSICS, 1986, 64 (08) :920-931
[8]   Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons [J].
Chen, C. D. ;
Patel, P. K. ;
Hey, D. S. ;
Mackinnon, A. J. ;
Key, M. H. ;
Akli, K. U. ;
Bartal, T. ;
Beg, F. N. ;
Chawla, S. ;
Chen, H. ;
Freeman, R. R. ;
Higginson, D. P. ;
Link, A. ;
Ma, T. Y. ;
MacPhee, A. G. ;
Stephens, R. B. ;
Van Woerkom, L. D. ;
Westover, B. ;
Porkolab, M. .
PHYSICS OF PLASMAS, 2009, 16 (08)
[9]   Photonuclear fission from high energy electrons from ultraintense laser-solid interactions [J].
Cowan, TE ;
Hunt, AW ;
Phillips, TW ;
Wilks, SC ;
Perry, MD ;
Brown, C ;
Fountain, W ;
Hatchett, S ;
Johnson, J ;
Key, MH ;
Parnell, T ;
Pennington, DM ;
Snavely, RA ;
Takahashi, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :903-906
[10]   Laser-based Kα X-ray emission characterization using a high contrast ratio and high-power laser system [J].
Fourmaux, S. ;
Kieffer, J. C. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (06)