The Gauss-Knorrer map for the Rosochatius dynamical system

被引:13
作者
Kubo, R [1 ]
Ogura, W
Saito, T
Yasui, Y
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Osaka Univ, Dept Phys, Suita, Osaka 565, Japan
[3] Kwansei Gakuin Univ, Dept Phys, Nishinomiya, Hyogo 662, Japan
[4] Osaka City Univ, Dept Phys, Osaka 558, Japan
关键词
nonlinear integrable systems; Rosochatius; Gauss-Knorrer map; duality;
D O I
10.1016/S0375-9601(98)00860-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We found a nonlinear integrable system dual to the Rosochatius dynamical system in arbitrary dimensions by means of the Gauss-Knorrer map. The relationship between the Rosochatius system and its dual system is elucidated from the point of view of constrained Hamilonian systems. Dirac brackets for dynamical variables and conserved quantities for the dual system are derived explicitly. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:6 / 12
页数:7
相关论文
共 25 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   THE KOWALEWSKI AND HENON-HEILES MOTIONS AS MANAKOV GEODESIC-FLOWS ON SO(4) - A TWO-DIMENSIONAL FAMILY OF LAX PAIRS [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 113 (04) :659-700
[3]  
CEWEN C, 1995, SOLITON THEORY ITS A
[4]   NON-LINEAR WAVE-EQUATIONS AND CONSTRAINED HARMONIC MOTION [J].
DEIFT, P ;
LUND, F ;
TRUBOWITZ, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :141-188
[5]  
Dirac P., 1967, Lectures on Quantum Mechanics
[6]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[7]   Separable Hamiltonians and integrable systems of hydrodynamic type [J].
Ferapontov, EV ;
Fordy, AP .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) :169-182
[8]   QUANTIZED NEUMANN PROBLEM, SEPARABLE POTENTIALS ON S-N AND THE LAME EQUATION [J].
GURARIE, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) :5355-5391
[9]  
Henneaux M., 1992, Quantization of Gauge Systems
[10]  
JACOBI CGJ, 1884, GESAMMELTE WERKE S