Laplace's method for iterated complex Brownian integrals

被引:0
作者
Liorit, G [1 ]
机构
[1] Univ Poitiers, Dept Math, SP2MI, F-86962 Futuroscope, France
关键词
random matrix; Gaussian Unitary Ensemble; symmetric space; Weyl chamber; complex semisimple group; representation theory; Pitman's theorem; iterated stochastic integrals; Laplace's method;
D O I
10.1007/s00440-004-0409-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A kind of Laplace's method is developped for iterated stochastic integrals where integrators are complex standard Brownian motions. Then it is used to extend properties of Bougerol and Jeulin's path transform in the random case when simple representations of complex semisimple Lie algebras are not supposed to be minuscule.
引用
收藏
页码:18 / 42
页数:25
相关论文
共 14 条
[1]  
Anker JP, 2002, REV MAT IBEROAM, V18, P41
[2]  
ARNAUDON M, 1993, ANN I H POINCARE-PR, V29, P269
[3]   GUEs and queues [J].
Baryshnikov, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) :256-274
[4]   SOME PROPERTIES OF BROWNIAN-MOTION IN A CONE [J].
BIANE, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 53 (02) :233-240
[5]  
BIANE P, LITTELMANN PATHS BRO
[6]   Paths in Weyl chambers and random matrices [J].
Bougerol, P ;
Jeulin, T .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) :517-543
[7]   Limit theorems for height fluctuations in a class of discrete space and time growth models [J].
Gravner, J ;
Tracy, CA ;
Widom, H .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (5-6) :1085-1132
[8]  
HAKIMDOWEK M, 1986, LECT NOTES MATH, V1204, P352
[9]   PATHS AND ROOT OPERATORS IN REPRESENTATION-THEORY [J].
LITTELMANN, P .
ANNALS OF MATHEMATICS, 1995, 142 (03) :499-525
[10]   A REPRESENTATION FOR NON-COLLIDING RANDOM WALKS [J].
O'Connell, Neil ;
Yor, Marc .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 :1-12