Normal coverings of finite symmetric and alternating groups

被引:20
作者
Bubboloni, Daniela [1 ]
Praeger, Cheryl E. [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat Decis, I-50134 Florence, Italy
[2] Univ Western Australia, Ctr Math Symmetry & Computat, Sch Math & Stat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Covering; Symmetric group; Alternating group; PRIMITIVE PERMUTATION-GROUPS; POLYNOMIALS; ROOTS; SUBGROUPS;
D O I
10.1016/j.jcta.2011.03.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the minimum number of maximal subgroups Hi, i = 1, ... k of the symmetric group S(n) (or the alternating group An) such that each element in the group S(n) (respectively A(n)) lies in some conjugate of one of the H(i). We prove that this number lies between a phi(n) and bn for certain constants a, b. where phi(n) is the Euler phi-function, and we show that the number depends on the arithmetical complexity of n. Moreover in the case where n is divisible by at most two primes, we obtain an upper bound of 2 +phi(n)/2, and we determine the exact value for S(n) when n is odd and for A(n) when n is even. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2000 / 2024
页数:25
相关论文
共 18 条
[1]  
Abbott Rachel., ATLAS FINITE GROUP R
[2]  
BAER R, 1960, MATH Z, V75, P333
[3]   Polynomials with roots modulo every integer [J].
Berend, D ;
Bilu, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1663-1671
[4]   Polynomials with roots mod p for all primes p [J].
Brandl, R ;
Bubboloni, D ;
Hupp, I .
JOURNAL OF GROUP THEORY, 2001, 4 (02) :233-239
[5]  
BUBBOLONI D, 1998, QUADERNO DIPARTIMENT
[6]  
CAMERON P. J., 1999, PERMUTATION GROUPS
[7]   ON N-SUM GROUPS [J].
COHN, JHE .
MATHEMATICA SCANDINAVICA, 1994, 75 (01) :44-58
[8]  
Conway J. H., 1985, ATLAS of Finite Groups
[9]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[10]  
Huppert B., 1982, Finite Groups, VIII