Computation of the effects of uncertainty in volatility on option pricing and hedging

被引:2
作者
Namihira, Motoi [1 ]
Kopriva, David A. [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
option pricing; uncertainty; polynomial chaos; hedging; Monte Carlo; POLYNOMIAL CHAOS; AMERICAN; VALUATION; BEHAVIOR;
D O I
10.1080/00207160.2012.688819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We quantify the effect of uncertainty in the volatility parameter alpha on the Black-Scholes price of the European and American put. We apply probabilistic uncertainty analysis to the Black-Scholes model and compare the results with those of the Uncertain Volatility model. From historical data, we calibrate a probability distribution for the volatility. We then use Monte Carlo (MC) and a surrogate Polynomial Chaos (PC)/MC method to compute uncertainty bounds. The calibrated probability distribution is not one related to a standard orthogonal basis, so a basis is constructed numerically for the PC approximation. We show how to construct one stably from the probability distribution. We show that both methods give the same results, and quantify the relative speedup of the surrogate method. Finally, we investigate the effect of the parametric uncertainty, and show, for example, that the presence of uncertainty smoothes out the optimal exercise boundary of the American put.
引用
收藏
页码:1281 / 1302
页数:22
相关论文
共 25 条
  • [11] Ikonen S., 2007, Applied Mathematical Sciences, V1, P2529
  • [12] Kopriva DA, 2009, SCI COMPUT, P3, DOI 10.1007/978-90-481-2261-5_1
  • [13] Valuing American options by simulation: A simple least-squares approach
    Longstaff, FA
    Schwartz, ES
    [J]. REVIEW OF FINANCIAL STUDIES, 2001, 14 (01) : 113 - 147
  • [14] Lyons T.J., 1995, Appl. Math. Finance, V2, P117
  • [15] Polynomial chaos for simulating random volatilities
    Pulch, Roland
    van Emmerich, Cathrin
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (02) : 245 - 255
  • [16] Shreve S.E., 2004, Stochastic Calculus for Finance: Continuous-time models, VVolume 11
  • [17] Silverman B.W., 1986, DENSITY ESTIMATION S, DOI [10.1201/9781315140919, DOI 10.1201/9781315140919]
  • [18] Walters R., 2002, UNCERTAINTY ANAL FLU
  • [19] Long-term behavior of polynomial chaos in stochastic flow simulations
    Wan, Xiaoliang
    Karniadakis, George Em
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) : 5582 - 5596
  • [20] Willmot P., 1993, Option Pricing: Mathematical Models and Computation