GLOBAL WELL-POSEDNESS AND LARGE-TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL IN AN EXTERIOR DOMAIN

被引:0
作者
Zhong, H. U. A. [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Peoples R China
关键词
  hyperbolic-parabolic system; chemotaxis; exterior domain; global existence; large time behavior; CONSERVATION-LAWS; DIFFUSION LIMIT; SYSTEM; CHEMOTAXIS; STABILITY; EQUATIONS; DYNAMICS;
D O I
10.3934/cpaa.2022129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a hyperbolic-parabolic system derived from a limiting case of chemotaxis model in an exterior domain. By energy method we prove global existence for the initial-boundary value problem in an exterior domain when the initial data is a small perturbation around constant equilibrium s-tates, and the solutions converge to the states at an algebraic decay rate as time goes to infinity.
引用
收藏
页码:3941 / 3959
页数:19
相关论文
共 50 条
  • [31] Global Well-Posedness of Second-Grade Fluid Equations in 2D Exterior Domain
    You, Xiaoguang
    Zang, Aibin
    ACTA APPLICANDAE MATHEMATICAE, 2022, 182 (01)
  • [32] ON THE WELL POSEDNESS AND LARGE-TIME BEHAVIOR FOR BOUSSINESQ EQUATIONS IN MORREY SPACES
    de Almeida, Marcelo F.
    Ferreira, Lucas C. F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (7-8) : 719 - 742
  • [33] Global well-posedness of 2D Euler-α equation in exterior domain
    You, Xiaoguang
    Zang, Aibin
    Li, Yin
    NONLINEARITY, 2022, 35 (11) : 5852 - 5879
  • [34] Global well-posedness and asymptotic behavior for the Euler-alignment system with pressure
    Bai, Xiang
    Tan, Changhui
    Xue, Liutang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 407 : 269 - 310
  • [35] On the global well-posedness of the tropical climate model
    Li, Jinlu
    Zhai, Xiaoping
    Yin, Zhaoyang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [36] GLOBAL SOLUTIONS TO A HYPERBOLIC-PARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA
    Guo Jun
    Xiao Jixiong
    Zhao Huijiang
    Zhu Changjiang
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 629 - 641
  • [37] WELL-POSEDNESS AND REGULARITY FOR QUASILINEAR DEGENERATE PARABOLIC-HYPERBOLIC SPDE
    Gess, Benjamin
    Hofmanova, Martina
    ANNALS OF PROBABILITY, 2018, 46 (05) : 2495 - 2544
  • [38] Well-posedness and large time behavior for Cahn-Hilliard-Oono equation
    Duan, Ning
    Wang, Jing
    Zhao, Xiaopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [39] Global well-posedness and large time behavior for the 3D anisotropic micropolar equations
    Shang, Haifeng
    Liu, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 421 : 531 - 557
  • [40] On well-posedness of Ericksen-Leslie's parabolic-hyperbolic liquid crystal model in compressible flow
    Jiang, Ning
    Luo, Yi-Long
    Tang, Shaojun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (01) : 121 - 183