Crystalline and electronic structures of lithium silicates: A density functional theory study

被引:33
作者
Tang, Tao [1 ,2 ]
Chen, Piheng [1 ]
Luo, Wenhua [1 ]
Luo, Deli [1 ]
Wang, Yu [2 ]
机构
[1] Sci & Technol Surface Phys & Chem Lab, Mianyang 621907, Sichuan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
CERAMIC BREEDER MATERIALS; TRITIUM RELEASE BEHAVIOR; PURGE GAS CONDITIONS; AB-INITIO; ELASTIC-CONSTANTS; TRANSITION-METALS; OCCUPATION SITES; CHEMICAL FORM; OXIDE; HYDROGEN;
D O I
10.1016/j.jnucmat.2011.08.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium silicates, such as Li2SiO3 and Li4SiO4, are considered as favorable candidates for the tritium breeding materials of a deuterium-tritium type nuclear fusion reactor. Their bulk structural and electronic properties are investigated using pseudopotential plane wave (PPW) method within density functional theory (OFT). The optimized crystal structure parameters are well consistent with the experimental. results. The results indicate that Li2SiO3 and Li4SiO4 are insulators with band gaps of about 5.36 and 5.53 eV, respectively. The valence electrons density of state reveal the covalency properties mainly resulting from the overlapping of O 2p and Si 3p orbital electrons in both lithium silicates. The nonbridging 0 (NBO) atoms and bridging O (BO) atoms of Li2SiO3 exhibit significantly different electron distributions. The Si 3s and 3p hybridization is observed in Li2SiO3, but not in Li4SiO4. The mechanical elastic constants reflected Li4SiO4 might be unstable in some degrees. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
[31]   Structural and electronic properties of BeH2 polymorphs: a study by density functional theory [J].
Trivedi, D. K. ;
Galav, K. L. ;
Jaaffrey, S. N. A. ;
Joshi, K. B. .
INDIAN JOURNAL OF PHYSICS, 2016, 90 (11) :1257-1263
[32]   Electronic structure of the pentacene-gold interface: A density-functional theory study [J].
Li, Hong ;
Duan, Yiqun ;
Coropceanu, Veaceslav ;
Bredas, Jean-Luc .
ORGANIC ELECTRONICS, 2009, 10 (08) :1571-1578
[33]   Density functional theory study on the electronic structure and optical properties of S absorbed graphene [J].
Wei, Lin ;
Liu, Gui-Li ;
Fan, Da-Zhi ;
Zhang, Guo-Ying .
PHYSICA B-CONDENSED MATTER, 2018, 545 :99-106
[34]   Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study [J].
Majidi, Roya ;
Karami, AliReza ;
Rahmani, Khatereh ;
Khairogli, Amir Mohammad .
INTERNATIONAL JOURNAL OF NANO DIMENSION, 2020, 11 (02) :112-119
[35]   Probing the Structural and Electronic Properties of Dirhenium Halide Clusters: A Density Functional Theory Study [J].
Zhang, Li Huan ;
Xia, Xin Xin ;
Sun, Wei Guo ;
Lu, Cheng ;
Kuang, Xiao Yu ;
Le Chen, Bo ;
Maroulis, George .
SCIENTIFIC REPORTS, 2018, 8
[36]   Structural, electronic and optical properties of BeH2: A density functional theory study [J].
An, Xinyou ;
Zeng, Tixian ;
Ren, Weiyi .
MATERIALS RESEARCH EXPRESS, 2017, 4 (03)
[37]   Density functional theory study of the atomic and electronic structures of trans-vacant 1M Al-rich illite [J].
Gao, Wei ;
Zhao, Jian ;
He, Man-Chao .
CLAY MINERALS, 2023, 58 (04) :388-394
[38]   Density functional theory study of allopurinol [J].
Chong, Delano P. .
CANADIAN JOURNAL OF CHEMISTRY, 2013, 91 (07) :637-641
[39]   Multistate Density Functional Theory for Effective Diabatic Electronic Coupling [J].
Ren, Haisheng ;
Provorse, Makenzie R. ;
Bao, Peng ;
Qu, Zexing ;
Gao, Jiali .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (12) :2286-2293
[40]   MP2 versus density-functional theory study of the Compton profiles of crystalline urea [J].
Erba, Alessandro ;
Pisani, Cesare ;
Casassa, Silvia ;
Maschio, Lorenzo ;
Schuetz, Martin ;
Usvyat, Denis .
PHYSICAL REVIEW B, 2010, 81 (16)