Evaluation of Hofmeister effects on the kinetic stability of proteins

被引:123
作者
Broering, JM
Bommarius, AS
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
关键词
D O I
10.1021/jp053618+
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dissolved salts are known to affect properties of proteins in solution including solubility and melting temperature, and the effects of dissolved salts can be ranked qualitatively by the Hofmeister series. We seek a quantitative model to predict the effects of salts in the Hofmeister series on the deactivation kinetics of enzymes. Such a model would allow for a better prediction of useful biocatalyst lifetimes or an improved estimation of protein-based pharmaceutical shelf life. Here we consider a number of salt properties that are proposed indicators of Hofmeister effects in the literature as a means for predicting salt effects on the deactivation of horse liver alcohol dehydrogenase (HL-ADH), alpha-chymotrypsin, and monomeric red fluorescent protein (mRFP). We find that surface tension increments are not accurate predictors of salt effects but find a common trend between observed deactivation constants and B-viscosity coefficients of the Jones-Dole equation, which are indicative of ion hydration. This trend suggests that deactivation constants (log k(d,obs)) vary linearly with chaotropic B-viscosity coefficients but are relatively unchanged in kosmotropic solutions. The invariance with kosmotropic B-viscosity coefficients suggests the existence of a minimum deactivation constant for proteins. Differential scanning calorimetry is used to measure protein melting temperatures and thermodynamic parameters, which are used to calculate the intrinsic irreversible deactivation constant. We find that either the protein unfolding rate or the rate of intrinsic irreversible deactivation can control the observed deactivation rates.
引用
收藏
页码:20612 / 20619
页数:8
相关论文
共 52 条
[1]  
ABRAMZON AA, 1993, RUSS J APPL CHEM+, V66, P1139
[2]   PREFERENTIAL INTERACTIONS OF PROTEINS WITH SALTS IN CONCENTRATED-SOLUTIONS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6545-6552
[3]   PREFERENTIAL INTERACTIONS DETERMINE PROTEIN SOLUBILITY IN 3-COMPONENT SOLUTIONS - THE MGCL2 SYSTEM [J].
ARAKAWA, T ;
BHAT, R ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1990, 29 (07) :1914-1923
[4]  
ARAKAWA T, 1985, METHOD ENZYMOL, V114, P49
[5]   Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale [J].
Auton, M ;
Bolen, DW .
BIOCHEMISTRY, 2004, 43 (05) :1329-1342
[6]   Impact of protein denaturants and stabilizers on water structure [J].
Batchelor, JD ;
Olteanu, A ;
Tripathy, A ;
Pielak, GJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (07) :1958-1961
[7]   Proteins in mixed solvents: A molecular-level perspective [J].
Baynes, BM ;
Trout, BL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (50) :14058-14067
[8]  
Bolen D W, 2001, Methods Mol Biol, V168, P17
[9]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[10]   Molecular crowding enhances native state stability and refolding rates of globular proteins [J].
Cheung, MS ;
Klimov, D ;
Thirumalai, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (13) :4753-4758