Surface Modification of Bacterial Cellulose for Biomedical Applications

被引:75
作者
Aditya, Teresa [1 ,2 ]
Allain, Jean Paul [1 ,2 ,3 ,4 ,5 ]
Jaramillo, Camilo [1 ]
Restrepo, Andrea Mesa [2 ]
机构
[1] Penn State Univ, Ken & Mary Alice Lindquist Dept Nucl Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[4] Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USA
[5] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
关键词
bacterial cellulose; surface chemistry; surface analysis; surface functionalization; interface; tissue engineering; bactericidal; WALLED CARBON NANOTUBES; GRAPHENE OXIDE; WOUND DRESSINGS; HYDROXYAPATITE; NANOCOMPOSITES; FABRICATION; COMPOSITE; MEMBRANE; SCAFFOLD; HYDROGEL;
D O I
10.3390/ijms23020610
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.
引用
收藏
页数:26
相关论文
共 164 条
[21]   Escherichia coli Adhesion and Biofilm Formation on Polydimethylsiloxane are Independent of Substrate Stiffness [J].
Arias, Sandra L. ;
Devorkin, Joshua ;
Civantos, Ana ;
Allain, Jean Paul .
LANGMUIR, 2021, 37 (01) :16-25
[22]   Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts [J].
Arias, Sandra L. ;
Shetty, Akshath ;
Devorkin, Joshua ;
Allain, Jean-Paul .
ACTA BIOMATERIALIA, 2018, 77 :172-181
[23]   Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles [J].
Arias, Sandra L. ;
Shetty, Akshath R. ;
Senpan, Angana ;
Echeverry-Rendon, Monica ;
Reece, Lisa M. ;
Allain, Jean Paul .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (111)
[24]   Surface modification and evaluation of bacterial cellulose for drug delivery [J].
Badshah, Munair ;
Ullah, Hanif ;
Khan, Abdur Rahman ;
Khan, Shaukat ;
Park, Joong Kon ;
Khan, Taous .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 113 :526-533
[25]   Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001 [J].
Bae, SO ;
Sugano, Y ;
Ohi, K ;
Shoda, M .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 65 (03) :315-322
[26]   Production of hydroxyapatite-bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications [J].
Bayir, Ece ;
Bilgi, Eyup ;
Hames, E. Esin ;
Sendemir, Aylin .
CELLULOSE, 2019, 26 (18) :9803-9817
[27]   Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment [J].
Bazaka, Kateryna ;
Jacob, Mohan V. ;
Crawford, Russell J. ;
Ivanova, Elena P. .
ACTA BIOMATERIALIA, 2011, 7 (05) :2015-2028
[28]   Surface modification of bacterial cellulose membrane by oxygen plasma treatment [J].
Bhanthumnavin, W. ;
Wanichapichart, P. ;
Taweepreeda, W. ;
Sirijarukula, S. ;
Paosawatyanyong, B. .
SURFACE & COATINGS TECHNOLOGY, 2016, 306 :272-278
[29]   Low and atmospheric plasma polymerisation of nanocoatings for bio-applications [J].
Bhatt, Sudhir ;
Pulpytel, Jerome ;
Arefi-Khonsari, Farzaneh .
SURFACE INNOVATIONS, 2015, 3 (02) :63-83
[30]  
Bianchet Ritanara Tayane, 2020, Biotechnology Reports, V27, pe00502, DOI 10.1016/j.btre.2020.e00502