Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems

被引:16
作者
He, Xin [1 ]
Hu, Rong [2 ]
Fang, Ya-Ping [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inertial accelerated primal-dual method; Linear equality constrained convex optimization problem; O (1/k(2)) convergence rate; Inexactness; CONVERGENCE; ALGORITHMS; DECOMPOSITION; MINIMIZATION; FASTER;
D O I
10.1007/s11075-021-01246-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an inertial accelerated primal-dual method for the linear equality constrained convex optimization problem. When the objective function has a "nonsmooth + smooth" composite structure, we further propose an inexact inertial primal-dual method by linearizing the smooth individual function and solving the subproblem inexactly. Assuming merely convexity, we prove that the proposed methods enjoy O(1/k(2)) convergence rate on the objective residual and the feasibility violation in the primal model. Numerical results are reported to demonstrate the validity of the proposed methods.
引用
收藏
页码:1669 / 1690
页数:22
相关论文
共 34 条
[31]   NON-STATIONARY FIRST-ORDER PRIMAL-DUAL ALGORITHMS WITH FASTER CONVERGENCE RATES [J].
Tran-Dinh, Quoc ;
Zhu, Yuzixuan .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) :2866-2896
[32]   PROBING THE PARETO FRONTIER FOR BASIS PURSUIT SOLUTIONS [J].
van den Berg, Ewout ;
Friedlander, Michael P. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02) :890-912
[33]   ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING [J].
Xu, Yangyang .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) :1459-1484
[34]   Bregman Iterative Algorithms for l1-Minimization with Applications to Compressed Sensing [J].
Yin, Wotao ;
Osher, Stanley ;
Goldfarb, Donald ;
Darbon, Jerome .
SIAM JOURNAL ON IMAGING SCIENCES, 2008, 1 (01) :143-168