Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems

被引:16
作者
He, Xin [1 ]
Hu, Rong [2 ]
Fang, Ya-Ping [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inertial accelerated primal-dual method; Linear equality constrained convex optimization problem; O (1/k(2)) convergence rate; Inexactness; CONVERGENCE; ALGORITHMS; DECOMPOSITION; MINIMIZATION; FASTER;
D O I
10.1007/s11075-021-01246-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an inertial accelerated primal-dual method for the linear equality constrained convex optimization problem. When the objective function has a "nonsmooth + smooth" composite structure, we further propose an inexact inertial primal-dual method by linearizing the smooth individual function and solving the subproblem inexactly. Assuming merely convexity, we prove that the proposed methods enjoy O(1/k(2)) convergence rate on the objective residual and the feasibility violation in the primal model. Numerical results are reported to demonstrate the validity of the proposed methods.
引用
收藏
页码:1669 / 1690
页数:22
相关论文
共 34 条
[1]   Convergence rate of inertial Forward-Backward algorithm beyond Nesterov's rule [J].
Apidopoulos, Vassilis ;
Aujol, Jean-Francois ;
Dossal, Charles .
MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) :137-156
[2]   Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity [J].
Attouch, Hedy ;
Chbani, Zaki ;
Peypouquet, Juan ;
Redont, Patrick .
MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) :123-175
[3]   THE RATE OF CONVERGENCE OF NESTEROV'S ACCELERATED FORWARD-BACKWARD METHOD IS ACTUALLY FASTER THAN 1/k2 [J].
Attouch, Hedy ;
Peypouquet, Juan .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (03) :1824-1834
[4]   A DYNAMICAL APPROACH TO AN INERTIAL FORWARD-BACKWARD ALGORITHM FOR CONVEX MINIMIZATION [J].
Attouch, Hedy ;
Peypouquet, Juan ;
Redont, Patrick .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) :232-256
[5]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[6]  
Bertsekas D.P., 2014, Constrained optimization and Lagrange multiplier methods, DOI DOI 10.1016/C2013-0-10366-2
[7]  
Bot R. I., 2021, FAST AUGMENTED LAGRA
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[10]   A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS [J].
CHEN, G ;
TEBOULLE, M .
MATHEMATICAL PROGRAMMING, 1994, 64 (01) :81-101