Pullback attractors of 2D incompressible Navier-Stokes-Voight equations with delay

被引:7
作者
Cao, J. [1 ]
Qin, Y. [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
关键词
continuous delay; distributed delay; Navier-Stokes-Voight equation; pullback attractors; 2D-NAVIER-STOKES EQUATIONS; GLOBAL ATTRACTORS; REGULARITY; BEHAVIOR;
D O I
10.1002/mma.4481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the 2D Navier-Stokes-Voight equations with 3 delays in R-2 is considered. By using the Faedo-Galerkin method, Lions-Aubin lemma, and Arzela-Ascoli theorem, we establish the global well-posedness of solutions and the existence of pullback attractors in H-1.
引用
收藏
页码:6670 / 6683
页数:14
相关论文
共 35 条
[11]  
García-Luengo J, 2013, ADV NONLINEAR STUD, V13, P331
[12]   Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations [J].
Garcia-Luengo, Julia ;
Marin-Rubio, Pedro ;
Real, Jose .
NONLINEARITY, 2012, 25 (04) :905-930
[13]   Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour [J].
Garcia-Luengo, Julia ;
Marin-Rubio, Pedro ;
Real, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (08) :4333-4356
[14]   Navier-Stokes equations with delays on unbounded domains [J].
Garrido-Atienza, MJ ;
Marín-Rubio, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :1100-1118
[15]  
Hale JK., 1993, Introduction To Functional Differential Equations, V99
[16]  
Kalantarov V.K, 1988, THESIS
[17]  
Kalantarov V.K., 1986, ZAP NAUCHN SEM LENIN, V152, P50
[18]   Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations [J].
Kalantarov, Varga K. ;
Titi, Edriss S. .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (06) :697-714
[19]   Gevrey Regularity for the Attractor of the 3D Navier-Stokes-Voight Equations [J].
Kalantarov, Varga K. ;
Levant, Boris ;
Titi, Edriss S. .
JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (02) :133-152
[20]  
Krasovskii N. N., 2002, Stability of Motion