Unsupervised Degradation Representation Learning for Blind Super-Resolution

被引:269
作者
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Dong, Xiaoyu [2 ,3 ]
Xu, Qingyu [1 ]
Yang, Jungang [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol, Changsha, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
[3] RIKEN, AIP, Tokyo, Japan
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.01044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing CNN-based super-resolution (SR) methods are developed based on an assumption that the degradation is fixed and known (e.g., bicubic downsampling). However, these methods suffer a severe performance drop when the real degradation is different from their assumption. To handle various unknown degradations in real-world applications, previous methods rely on degradation estimation to reconstruct the SR image. Nevertheless, degradation estimation methods are usually time-consuming and may lead to SR failure due to large estimation errors. In this paper, we propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation. Specifically, we learn abstract representations to distinguish various degradations in the representation space rather than explicit estimation in the pixel space. Moreover, we introduce a Degradation-Aware SR (DASR) network with flexible adaption to various degradations based on the learned representations. It is demonstrated that our degradation representation learning scheme can extract discriminative representations to obtain accurate degradation information. Experiments on both synthetic and real images show that our network achieves state-of-the-art performance for the blind SR task. Code is available at: https://github.com/LongguangWang/ DASR.
引用
收藏
页码:10576 / 10585
页数:10
相关论文
共 44 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[3]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00357
[4]  
[Anonymous], 2020, ICML
[5]  
Bell-Kligler S, 2019, ADV NEUR IN, V32
[6]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[7]   Knowledge-guided Deep Reinforcement Learning for Interactive Recommendation [J].
Chen, Xiaocong ;
Huang, Chaoran ;
Yao, Lina ;
Wang, Xianzhi ;
Liu, Wei ;
Zhang, Wenjie .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[8]   Unsupervised Visual Representation Learning by Context Prediction [J].
Doersch, Carl ;
Gupta, Abhinav ;
Efros, Alexei A. .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1422-1430
[9]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[10]  
Dosovitskiy A, 2014, ADV NEUR IN, V27