Thermodynamic analysis and optimisation of a solar combined cooling, heating and power system for a domestic application

被引:14
作者
Boyaghchi, Fateme Ahmadi [1 ]
Heidarnejad, Parisa [1 ]
机构
[1] Alzahra Univ, Fac Engn, Tehran 009821, Iran
关键词
combined cooling; heating and power; CCHP; ejector; energy; exergy; R123; optimisation; ORGANIC RANKINE-CYCLE; TRIGENERATION SYSTEM; PARAMETRIC ANALYSIS; EXERGY ANALYSES; GAS-TURBINE; DRIVEN; ENERGY; PERFORMANCE; COLLECTORS; REFRIGERATION;
D O I
10.1504/IJEX.2015.068216
中图分类号
O414.1 [热力学];
学科分类号
摘要
A micro solar driven combined cooling, heating and power (CCHP) system based on organic Rankine cycle (ORC) is proposed and investigated for summer and winter modes. Detailed exergy analyses indicate that 11.7% and 9.8% of total input exergy are useful in winter and summer, respectively. Auxiliary boiler and solar collectors are found to be the highest source of irreversibility for both modes. The effects of several key parameters on the system performance, required collector area and solar fraction are investigated. The system exergy efficiencies are optimised by means of genetic algorithm. Optimum values of turbine inlet pressure, turbine inlet temperature and turbine back pressure are 985.6 kPa, 130 degrees C and 263.1 kPa in summer and 1001 kPa, 120 degrees C and 332.4 kPa in winter, respectively. It is also shown that system exergy efficiency improves from 9.8% to 10.09% in summer and 11.7 to 17.21% in winter under optimum conditions.
引用
收藏
页码:139 / 168
页数:30
相关论文
共 36 条
[1]   Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :447-453
[2]   Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part I - Formulations [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
ENERGY CONVERSION AND MANAGEMENT, 2013, 69 :199-208
[3]   Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
ENERGY, 2012, 45 (01) :975-985
[4]   Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production [J].
Al-Sulaiman, Fahad A. ;
Hamdullahpur, Feridun ;
Dincer, Ibrahim .
RENEWABLE ENERGY, 2012, 48 :161-172
[5]   Performance comparison of three trigeneration systems using organic rankine cycles [J].
Al-Sulaiman, Fahad A. ;
Hamdullahpur, Feridun ;
Dincer, Ibrahim .
ENERGY, 2011, 36 (09) :5741-5754
[6]   Exergy modeling of a new solar driven trigeneration system [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
SOLAR ENERGY, 2011, 85 (09) :2228-2243
[7]   Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production [J].
Al-Sulaiman, Fahad A. ;
Hamdullahpur, Feridun ;
Dincer, Ibrahim .
APPLIED THERMAL ENGINEERING, 2011, 31 (04) :439-446
[8]   Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) :5104-5113
[9]   Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine: Part II - An application [J].
Balli, Ozgur ;
Aras, Haydar ;
Hepbasli, Arif .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (11) :2260-2271
[10]   Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine: Part I - Methodology [J].
Balli, Ozgur ;
Aras, Haydar ;
Hepbasli, Arif .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (11) :2252-2259