Can mathematical modelling solve the current Covid-19 crisis?

被引:79
作者
Panovska-Griffiths, Jasmina [1 ,2 ,3 ]
机构
[1] UCL, Inst Epidemiol & Healthcare, Dept Appl Hlth Res, London, England
[2] UCL, Inst Global Hlth, Inst Epidemiol & Healthcare, London, England
[3] Univ Oxford, Queens Coll, Oxford, England
关键词
D O I
10.1186/s12889-020-08671-z
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Since COVID-19 transmission started in late January, mathematical modelling has been at the forefront of shaping the decisions around different non-pharmaceutical interventions to confine its' spread in the UK and worldwide. This Editorial discusses the importance of modelling in understanding Covid-19 spread, highlights different modelling approaches and suggests that while modelling is important, no one model can give all the answers.
引用
收藏
页数:3
相关论文
共 7 条
[1]  
[Anonymous], **NON-TRADITIONAL**
[2]  
[Anonymous], 2020, New Scientist
[3]   Mathematical models to characterize early epidemic growth: A review [J].
Chowell, Gerardo ;
Sattenspiel, Lisa ;
Bansal, Shweta ;
Viboud, Cecile .
PHYSICS OF LIFE REVIEWS, 2016, 18 :66-97
[4]  
Ferguson NM, IMPACT NONPHARMACEUT
[5]   Are we prepared for the next influenza pandemic? Lessons from modelling different preparedness policies against four pandemic scenarios [J].
Panovska-Griffiths, Jasmina ;
Grieco, Luca ;
van Leeuwen, Edwin ;
Baguelin, Marc ;
Pebody, Richard ;
Utley, Martin .
JOURNAL OF THEORETICAL BIOLOGY, 2019, 481 :223-232
[6]  
Paton R., FUNDAMENTAL PRINCIPL
[7]  
Prestigiacomo Amanda, 2020, DAILY WIRE 0326