Parabolic Kazhdan-Lusztig polynomials of type-1 for quasi-minuscule quotients

被引:0
作者
Recupero, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Algebraic combinatorics; Kazhdan-Lusztig polynomials; Parabolic quotients; Quasi-minuscule quotients; FORMULA;
D O I
10.1016/j.jcta.2018.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjectures of F. Brenti, P. Mongelli and P. Sentinelli which give a combinatorial interpretation to the parabolic Kazhdan-Lusztig polynomials of type -1 for quasi-minuscule quotients of the Weyl groups of type B-n and D-n. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:327 / 358
页数:32
相关论文
共 18 条
[11]   The Hodge theory of Soergel bimodules [J].
Elias, Ben ;
Williamson, Geordie .
ANNALS OF MATHEMATICS, 2014, 180 (03) :1089-1136
[12]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[13]  
Humphreys J.E., 1990, CAMBRIDGE STUDIES AD
[14]   Parabolic Kazhdan-Lusztig polynomials and Schubert varieties [J].
Kashiwara, M ;
Tanisaki, T .
JOURNAL OF ALGEBRA, 2002, 249 (02) :306-325
[15]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[16]  
LASCOUX A, 1981, ASTERISQUE, P249
[17]  
Leclerc B, 2000, ADV STU P M, V28, P155
[18]   On the decomposition matrices of the quantized Schur algebra [J].
Varagnolo, M ;
Vasserot, E .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :267-297