Parabolic Kazhdan-Lusztig polynomials of type-1 for quasi-minuscule quotients

被引:0
作者
Recupero, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Algebraic combinatorics; Kazhdan-Lusztig polynomials; Parabolic quotients; Quasi-minuscule quotients; FORMULA;
D O I
10.1016/j.jcta.2018.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjectures of F. Brenti, P. Mongelli and P. Sentinelli which give a combinatorial interpretation to the parabolic Kazhdan-Lusztig polynomials of type -1 for quasi-minuscule quotients of the Weyl groups of type B-n and D-n. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:327 / 358
页数:32
相关论文
共 18 条
[1]  
Bjorner A., 2005, GRAD TEXT M, V231
[3]   Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions [J].
Brenti, F .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :257-286
[4]   Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients [J].
Brenti, Francesco ;
Mongelli, Pietro ;
Sentinelli, Paolo .
ADVANCES IN APPLIED MATHEMATICS, 2016, 78 :27-55
[5]  
Brenti F, 2009, T AM MATH SOC, V361, P1703
[6]   On the quantum cohomology of adjoint varieties [J].
Chaput, P. E. ;
Perrin, N. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 :294-330
[7]   Deformed Kazhdan-Lusztig elements and Macdonald polynomials [J].
de Gier, Jan ;
Lascoux, Alain ;
Sorrell, Mark .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) :183-211
[9]   AN INVERSION-FORMULA FOR RELATIVE KAZHDAN-LUSZTIG POLYNOMIALS [J].
DOUGLASS, JM .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) :371-387
[10]   Differentiating the Weyl generic dimension formula with applications to support varieties [J].
Drupieski, Christopher M. ;
Nakano, Daniel K. ;
Parshall, Brian J. .
ADVANCES IN MATHEMATICS, 2012, 229 (05) :2656-2668