Biomimetic DNA Nanotechnology to Understand and Control Cellular Responses

被引:7
作者
Sethi, Soumya [1 ]
Sugiyama, Hiroshi [1 ,2 ]
Endo, Masayuki [1 ,2 ,3 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Yoshida Ushinomiyacho, Kyoto 6068501, Japan
[2] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Yoshida Ushinomiyacho, Kyoto 6068501, Japan
[3] Kansai Univ, Org Res & Dev Innovat Sci & Technol, Suita, Osaka 5648680, Japan
关键词
cell adhesion; cell morphology control; DNA nanotechnology; mechanical DNA polymers; photoswitch; EXTRACELLULAR-MATRIX; MULTIVALENT LIGANDS; HYDROGEL; PROBES;
D O I
10.1002/cbic.202100446
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
At the cellular level, numerous nanocues guide the cells to adhere, interact, proliferate, differentiate, etc. Understanding and manipulating the cellular functions in vitro, necessitates the elucidation of these nanocues provided to the cells by the extracellular matrix (ECM), neighbouring cells or in the form of ligands. DNA nanotechnology is a biocompatible, flexible and a promising molecular level toolkit for mimicking cell-cell and cell-matrix interactions. In this review, we summarize various advances in cell-matrix, cell-cell and cell receptor-ligand interactions using DNA nanotechnology as a tool. We also provide a brief outlook on the current challenges and the future potentials of these DNA-based nanostructures so as to inspire novel innovations in the field.
引用
收藏
页数:9
相关论文
共 50 条
[41]   DNA Nanotechnology in the Undergraduate Laboratory: Electrophoretic Analysis of DNA Nanostructure Biostability [J].
Chandrasekaran, Arun Richard .
JOURNAL OF CHEMICAL EDUCATION, 2023, 100 (01) :316-320
[42]   Nanoscale architecture and cellular adhesion of biomimetic collagen substrates [J].
Jabaiah, Abeer ;
Wang, Xi ;
Raman, Senthil Kumar ;
Ragan, Regina ;
Da Silva, Nancy A. ;
Wang, Szu-Wen .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 28 (09) :1354-1365
[43]   The potential of DNA nanotechnology to advance multiple therapeutic systems [J].
Medintz, Igor L. ;
Mathur, Divita .
THERAPEUTIC DELIVERY, 2023, 14 (10) :615-618
[44]   Homogeneous protein assays mediated by dynamic DNA nanotechnology [J].
Gao, Jiajie ;
Gao, Lu ;
Tang, Yanan ;
Li, Feng .
CANADIAN JOURNAL OF CHEMISTRY, 2022, 100 (12) :900-909
[45]   Surface Engineering of Lipid Vesicles Based on DNA Nanotechnology [J].
Hao, Pengyan ;
Niu, Liqiong ;
Luo, Yuanyuan ;
Wu, Na ;
Zhao, Yongxi .
CHEMPLUSCHEM, 2022, 87 (05)
[46]   Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology [J].
HuiQiao Wang ;
ZhaoXiang Deng .
ChineseChemicalLetters, 2015, 26 (12) :1435-1438
[47]   Smart Drug Delivery Systems Based on DNA Nanotechnology [J].
Fan, Qin ;
He, Zhimei ;
Xiong, Jinxin ;
Chao, Jie .
CHEMPLUSCHEM, 2022, 87 (03)
[48]   Obtaining Precise Molecular Information via DNA Nanotechnology [J].
Tang, Qian ;
Han, Da .
MEMBRANES, 2021, 11 (09)
[49]   Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction [J].
Park, Jeong Ah ;
Amri, Chaima ;
Kwon, Yein ;
Lee, Jin-Ho ;
Lee, Taek .
BIOSENSORS-BASEL, 2022, 12 (06)
[50]   DNA nanotechnology in ionic liquids and deep eutectic solvents [J].
Olave, Benat .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (05) :941-961