QUADRATIC FORMS FOR THE FERMIONIC UNITARY GAS MODEL

被引:18
|
作者
Finco, Domenico [1 ]
Teta, Alessandro [2 ]
机构
[1] Univ Telemat Int Uninettuno, Fac Ingn, I-00186 Rome, Italy
[2] Univ Aquila, Dipartimento Matemat Pura & Appl, I-67010 Laquila, Italy
关键词
zero-range interactions; unitary gas; Skornyakov-Ter-Martirosyan extension; SYSTEMS;
D O I
10.1016/S0034-4877(12)60022-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quantum system in dimension three composed by a group of N identical fermions, with mass 1/2, interacting via zero-range interaction with a group of M identical fermions of a different type, with mass m/2. Exploiting a renormalization procedure, we construct the corresponding quadratic form and define the so-called Skornyakov-Ter-Martirosyan extension H-alpha, which is the natural candidate as a possible Hamiltonian of the system. It is shown that if the form is unbounded from below then H-alpha is not a self-adjoint and bounded from below operator, and this in particular suggests that the so-called Thomas effect could occur. In the special case N = 2, M = 1 we prove that this is in fact the case when a suitable condition on the parameter in is satisfied.
引用
收藏
页码:131 / 159
页数:29
相关论文
共 50 条
  • [1] Energy lower bound for the unitary N+1 fermionic model
    Correggi, M.
    Finco, D.
    Teta, A.
    EPL, 2015, 111 (01)
  • [2] Quadratic fermionic dynamics with dissipation
    Teretenkov, A. E.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 846 - 853
  • [3] Spectral and steady-state properties of fermionic random quadratic Liouvillians
    Costa, Joao
    Ribeiro, Pedro
    De Luca, Andrea
    Prosen, Tomaz
    Sa, Lucas
    SCIPOST PHYSICS, 2023, 15 (04):
  • [4] Linear-quadratic control and quadratic differential forms for multidimensional behaviors
    Napp, D.
    Trentelman, H. L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 117 - 130
  • [5] Crypto-Unitary Forms of Quantum Evolution Operators
    Znojil, Miloslav
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (06) : 2038 - 2045
  • [6] Lattice model for fermionic toric code
    Gu, Zheng-Cheng
    Wang, Zhenghan
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [7] Monte Carlo simulations of the unitary Bose gas
    Rossi, Maurizio
    Salasnich, Luca
    Ancilotto, Francesco
    Toigo, Flavio
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [8] Quenched Dynamics of the Momentum Distribution of the Unitary Bose Gas
    Ancilotto, Francesco
    Rossi, Maurizio
    Salasnich, Luca
    Toigo, Flavio
    FEW-BODY SYSTEMS, 2015, 56 (11-12) : 801 - 807
  • [9] Resonance triplet dynamics in the quenched unitary Bose gas
    van de Kraats, J.
    Ahmed-Braun, D. J. M.
    Colussi, V. E.
    Kokkelmans, S. J. J. M. F.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [10] No unitary bootstrap for the fractal Ising model
    Golden, John
    Paulos, Miguel F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):