Co-assembly of chitosan and phospholipids into hybrid hydrogels

被引:13
作者
Mendes, Ana C. [1 ]
Shekarforoush, Elhamalsadat [1 ]
Engwer, Christoph [2 ]
Beeren, Sophie R. [3 ]
Gorzelanny, Christian [4 ]
Goycoolea, Francisco M. [2 ]
Chronakis, Ioannis S. [1 ]
机构
[1] Tech Univ Denmark, NanobioSci Res Grp, DTU Food, Soltofts Plads 227, DK-2800 Lyngby, Denmark
[2] Westfal Wilhelms Univ Munster, IBBP, Schlossgarten 3, D-48149 Munster, Germany
[3] Tech Univ Denmark, DTU Chem, Kemitorvet 207, DK-2800 Lyngby, Denmark
[4] Heidelberg Univ, Med Fac Mannheim, Expt Dermatol, Theodor Kutzer Ufer 1-3, D-68167 Mannheim, Germany
关键词
biomaterials; carbohydrates; chitosan; colloids; EUCHIS-12; hydrogel; ICCC-13; phospholipids; self-assembly; DYNAMIC LIGHT-SCATTERING; DRUG-DELIVERY; LOCALIZED DELIVERY; LECITHIN; POLYSACCHARIDES; NANOPARTICLES; PACLITAXEL; SCAFFOLDS; MEMBRANE; INSIGHTS;
D O I
10.1515/pac-2016-0708
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties. A lower concentration of phospholipids (0.5 % wt/v) in the mixture, facilitates faster network formation as observed by Dynamic Light Scattering, with lower elastic modulus than the hydrogels formed with higher phospholipid content. The nano-porous structure of Ch/P hydrogels, with a diameter of 260 +/- 20 nm, as observed by cryo-scanning electron microscopy, facilitated the penetration of water and swelling. Cell studies revealed suitable biocompatibility of the Ch/P hydrogels that can be used within life sciences applications.
引用
收藏
页码:905 / 916
页数:12
相关论文
共 42 条
[1]   Chitin and chitosan in selected biomedical applications [J].
Anitha, A. ;
Sowmya, S. ;
Kumar, P. T. Sudheesh ;
Deepthi, S. ;
Chennazhi, K. P. ;
Ehrlich, H. ;
Tsurkan, M. ;
Jayakumar, R. .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (09) :1644-1667
[2]   Strategies to improve chitosan hemocompatibility: A review [J].
Balan, Vera ;
Verestiuc, Liliana .
EUROPEAN POLYMER JOURNAL, 2014, 53 :171-188
[3]  
Bhatia A, 2013, INT J PHARMACEUT, V444, P47, DOI 10.1016/j.ijpharm.2013.01.029
[4]   Chitosan-based hydrogels for controlled, localized drug delivery [J].
Bhattarai, Narayan ;
Gunn, Jonathan ;
Zhang, Miqin .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (01) :83-99
[5]   Hydrogels in sensing applications [J].
Buenger, Daniel ;
Topuz, Fuat ;
Groll, Juergen .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (12) :1678-1719
[6]   Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: Two types of gels [J].
Chronakis, IS ;
Piculell, L ;
Borgstrom, J .
CARBOHYDRATE POLYMERS, 1996, 31 (04) :215-225
[7]   Formation of Biocompatible Nanoparticles via the Self-Assembly of Chitosan and Modified Lecithin [J].
Chuah, A. M. ;
Kuroiwa, T. ;
Ichikawa, S. ;
Kobayashi, I. ;
Nakajima, M. .
JOURNAL OF FOOD SCIENCE, 2009, 74 (01) :N1-N8
[8]   Chitosan-A versatile semi-synthetic polymer in biomedical applications [J].
Dash, M. ;
Chiellini, F. ;
Ottenbrite, R. M. ;
Chiellini, E. .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (08) :981-1014
[9]   Characterization of gelification of chitosan solutions by dynamic light scattering [J].
De Morais, W. A. ;
Pereira, M. R. ;
Fonseca, J. L. C. .
CARBOHYDRATE POLYMERS, 2012, 87 (04) :2376-2380
[10]   NMR analysis of low molecular weight poly(lactic acid)s [J].
Espartero, JL ;
Rashkov, I ;
Li, SM ;
Manolova, N ;
Vert, M .
MACROMOLECULES, 1996, 29 (10) :3535-3539