DEATH OF ENTANGLEMENT AND PURITY IN A TWO QUBITS-FIELD SYSTEM INDUCED BY PHASE DAMPING

被引:1
作者
Obada, A. -S. F. [2 ]
Hessian, H. A. [1 ]
Mohamed, A. -B. A. [1 ,3 ]
Hashem, M. [1 ]
机构
[1] Assiut Univ, Fac Sci, Assiut, Egypt
[2] Al Azhar Univ, Fac Sci, Nasr City, Cairo, Egypt
[3] Salman Bin Abdulaziz Univ, Al Aflaj Community Coll, Al Aflaj, Saudi Arabia
关键词
death of entanglement; purity; decoherence; phase damping; MULTIPARTICLE ENTANGLEMENT; SUDDEN-DEATH; QUANTUM; ENTROPY; INFORMATION; SEPARABILITY; OPERATORS; STATES;
D O I
10.1007/s10946-012-9256-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the death of entanglement and the purity loss of a two qubits-field system in the dispersive regime with a reservoir. For an alternative entanglement measure, we calculate the negativity of the eigenvalues of a partially transposed density matrix and compare it with the mutual entropy. A new measure related to the mutual entropy, namely, the index of entropy, is proposed to measure the degree of entanglement, and this agrees well with the negativity. We found that the entanglement has a strong sensitivity to the phase damping. The asymptotic behavior of the field states, the two qubits, and the total system fall into a mixed state. We treat the phenomena of death of entanglement and purity as they arise from the effect of phase damping.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 42 条
[1]   Environment-induced sudden death of entanglement [J].
Almeida, M. P. ;
de Melo, F. ;
Hor-Meyll, M. ;
Salles, A. ;
Walborn, S. P. ;
Ribeiro, P. H. Souto ;
Davidovich, L. .
SCIENCE, 2007, 316 (5824) :579-582
[2]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[3]   ENTROPY AS A MEASURE OF QUANTUM OPTICAL CORRELATION [J].
BARNETT, SM ;
PHOENIX, SJD .
PHYSICAL REVIEW A, 1989, 40 (05) :2404-2409
[4]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   MEASUREMENT OF THE BELL OPERATOR AND QUANTUM TELEPORTATION [J].
BRAUNSTEIN, SL ;
MANN, A .
PHYSICAL REVIEW A, 1995, 51 (03) :R1727-R1730
[8]  
Bru D., 1998, PHYS REV A, V57, P2368
[9]   Negative entropy and information in quantum mechanics [J].
Cerf, NJ ;
Adami, C .
PHYSICAL REVIEW LETTERS, 1997, 79 (26) :5194-5197
[10]  
Chuang I. N., 2000, Quantum Computation and Quantum Information