On the effectiveness of preprocessing methods when dealing with different levels of class imbalance

被引:251
作者
Garcia, V. [1 ]
Sanchez, J. S. [1 ]
Mollineda, R. A. [1 ]
机构
[1] Univ Jaume 1, Dept Llenguatges & Sistemes Informat, Inst New Imaging Technol, Castellon de La Plana 12071, Spain
关键词
Imbalance; Resampling; Classification; Performance measures; Multi-dimensional scaling; NEAREST-NEIGHBOR; CLASSIFICATION;
D O I
10.1016/j.knosys.2011.06.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present paper investigates the influence of both the imbalance ratio and the classifier on the performance of several resampling strategies to deal with imbalanced data sets. The study focuses on evaluating how learning is affected when different resampling algorithms transform the originally imbalanced data into artificially balanced class distributions. Experiments over 17 real data sets using eight different classifiers, four resampling algorithms and four performance evaluation measures show that over-sampling the minority class consistently outperforms under-sampling the majority class when data sets are strongly imbalanced, whereas there are not significant differences for databases with a low imbalance. Results also indicate that the classifier has a very poor influence on the effectiveness of the resampling strategies. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 56 条
[1]  
Alaiz-Rodríguez R, 2008, LECT NOTES ARTIF INT, V5212, P660, DOI 10.1007/978-3-540-87481-2_43
[2]  
[Anonymous], 2004, KDD, DOI DOI 10.1073/pnas.0901650106
[3]  
[Anonymous], 2004, ACM SIGKDD EXPLORATI, DOI DOI 10.1145/1007730.1007737
[4]  
[Anonymous], 2007, ICML, DOI DOI 10.1145/1273496.1273614
[5]  
[Anonymous], 1997, P 14 INT C ONMACHINE
[6]   Decision boundary preserving prototype selection for nearest neighbor classification [J].
Barandela, R ;
Ferri, FJ ;
Sánchez, JS .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (06) :787-806
[7]  
Barandela R, 2004, LECT NOTES COMPUT SC, V3138, P806
[8]   Strategies for learning in class imbalance problems [J].
Barandela, R ;
Sánchez, JS ;
García, V ;
Rangel, E .
PATTERN RECOGNITION, 2003, 36 (03) :849-851
[9]  
Batista G. E., 2004, ACM SIGKDD Explor. Newslett., P20, DOI [10.1145/1007730.1007735, DOI 10.1145/1007730.1007735]
[10]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159