Near-Optimal Approximate Decremental All Pairs Shortest Paths

被引:27
作者
Chechik, Shiri [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
来源
2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) | 2018年
关键词
dynamic algorithms; shortest paths; emulator; DISTANCE ORACLES; ALGORITHM; FASTER;
D O I
10.1109/FOCS.2018.00025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider the decremental approximate all-pairs shortest paths (APSP) problem, where given a graph G the goal is to maintain approximate shortest paths between all pairs of nodes in G under a sequence of online adversarial edge deletions. We present a decremental APSP algorithm for undirected weighted graphs with (2 + epsilon)k - 1 stretch, Omicron(mn(1/k broken vertical bar) (0(1)) log (nW)) total update time and O(log log (nW)) query time for a fixed constant epsilon, where W is the maximum edge weight (assuming the minimum edge weight is 1) and k is any integer parameter. This is an exponential improvement both in the stretch and in the query time over previous works.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
[31]   Deterministic Decremental Single Source Shortest Paths: Beyond the O(mn) Bound [J].
Bernstein, Aaron ;
Chechik, Shiri .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :389-397
[32]   An optimal parallel algorithm for solving all-pairs shortest paths problem on circular-arc graphs [J].
Saha A. ;
Pal M. ;
Pal T.K. .
Journal of Applied Mathematics and Computing, 2005, 17 (1-2) :1-23
[33]   Fully Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update Time [J].
Mao, Xiao .
PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, :1141-1152
[34]   All-Pairs Shortest Paths in O(n2) Time with High Probability [J].
Peres, Yuval ;
Sotnikov, Dmitry ;
Sudakov, Benny ;
Zwick, Uri .
JOURNAL OF THE ACM, 2013, 60 (04)
[35]   All-Pairs Shortest Paths in O(n2) time with high probability [J].
Peres, Yuval ;
Sotnikov, Dmitry ;
Sudakov, Benny ;
Zwick, Uri .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :663-672
[36]   A Fast Algorithm to Find All-Pairs Shortest Paths in Complex Networks [J].
Peng, Wei ;
Hu, Xiaofeng ;
Zhao, Feng ;
Su, Jinshu .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 :557-566
[37]   A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths [J].
Chuzhoy, Julia ;
Zhang, Ruimin .
PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, :1159-1172
[38]   All Pairs Shortest Paths using bridging sets and rectangular matrix multiplication [J].
Zwick, U .
JOURNAL OF THE ACM, 2002, 49 (03) :289-317
[39]   Approximate Shortest Paths in Simple Polyhedra [J].
Li, Fajie ;
Klette, Reinhard .
DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 :513-+
[40]   FINDING THE HIDDEN PATH - TIME-BOUNDS FOR ALL-PAIRS SHORTEST PATHS [J].
KARGER, DR ;
KOLLER, D ;
PHILLIPS, SJ .
SIAM JOURNAL ON COMPUTING, 1993, 22 (06) :1199-1217